Search

"Three-dimensional printing of dipeptides with spatio-selective programming of crystallinity for multilevel anticounterfeiting ", a paper in Nano Letters

Nov 29, 2022

Dr Ji Tae Kim from Department of Mechanical Engineering and his team had worked on the research for the topic “Three-Dimensional Printing of Dipeptides with Spatio-Selective Programming of Crystallinity for Multilevel Anticounterfeiting”. The research was recently published by Nano Letters on September 29, 2022.

 

Details of the publication:

Three-Dimensional Printing of Dipeptides with Spatio-Selective Programming of Crystallinity for Multilevel Anticounterfeiting

Jihyuk Yang, Xiao Huan, Yu Liu, Heekwon Lee, Mojun Chen, Shiqi Hu, Sixi Cao, and Ji Tae Kim, Article in Nano Letters, https://pubs.acs.org/doi/10.1021/acs.nanolett.2c01761  

 

Abstract:

The functionalities of peptide microstructures and nanostructures can be enhanced by controlling their crystallinity. Gaining control over the crystallinity within the desired structure, however, remains a challenge. We have developed a three-dimensional (3D) printing method that enables spatioselective programming of the crystallinity of diphenylalanine (FF) dipeptide microarchitectures. A femtoliter ink meniscus is used to spatially control reprecipitation self-assembly, enabling the printing of a freestanding FF microstructure with programmed shape and crystallinity. The self-assembly crystallisation of FF can be switched on and off at will by controlling the evaporation of the binary solvent. The evaporation-dependent crystallisation was theoretically studied by the numerical simulation of supersaturation fields in the meniscus. We found that a 3D-printed FF microarchitecture with spatially programmed crystallinity can carry a 3D digital optical anisotropy pattern, applicable to generating polarisation-encoded anticounterfeiting labels. This crystallinity-controlled additive manufacturing will pave the new way for facilitating the creation of peptide-based devices.