SYLLABUSES FOR THE DEGREE OF
MASTER OF SCIENCE IN COMPUTER SCIENCE

[This syllabus is applicable to students admitted to the curriculum in the academic year 2021-22 and thereafter.]

Definition and Terminology

Stream of study – a specialisation in the curriculum selected by a candidate which can be General, Cyber Security, Financial Computing and Multimedia Computing.

Discipline course – any course on a list of courses in the discipline of curriculum which a candidate must pass at least a certain number of credits as specified in the Regulations.

Subject group – a subset of courses in the list of discipline courses which have the same specialisation.

Stream specific course – any course in a subject group which corresponds to the specialisation of the stream of study.

Elective course – any Taught Postgraduate level course offered by the Departments of the Faculty of Engineering for the fulfilment of the curriculum requirements of the degree of MSc in Computer Science that are not classified as discipline courses.

Capstone Experience – a 12-credit project or a 24-credit dissertation which is a compulsory and integral part of the curriculum.

Curriculum Structure

Candidates are required to complete 72 credits of courses as set out below, normally over one academic year of full-time study or two academic years of part-time study:

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Enrolment Mode of 10 courses + Project</th>
<th>Enrolment Mode of 8 courses + Dissertation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General Stream</td>
<td>General Stream</td>
</tr>
<tr>
<td></td>
<td>Not less than 48</td>
<td>Not less than 48 [Include at least 24 credits in Stream Specific Courses in the candidate’s corresponding stream of study]</td>
</tr>
<tr>
<td></td>
<td>[Include at least 24 credits in Stream Specific Courses in the candidate’s corresponding stream of study]</td>
<td>Not less than 36 [Include at least 24 credits in Stream Specific Courses in the candidate’s corresponding stream of study]</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>Not more than 12</td>
<td>Not more than 12</td>
</tr>
<tr>
<td>Capstone Experience</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>72</td>
</tr>
</tbody>
</table>
Enrolment Mode

Candidates are required to successfully complete 72 credits to graduate. They can do that by studying in one of the following enrolment modes:

(a) 10 courses (each equivalent to 6 credits) + Project (equivalent to 12 credits)

OR

(b) 8 courses (each equivalent to 6 credits) + Dissertation (equivalent to 24 credits)

Course Selection

Candidates shall select courses in accordance with the regulations of the degree. For General Stream, candidate can choose any discipline courses listed below in any subject group, and undertake a dissertation or a project (COMP7704 or COMP7705) in any area in computer science. In addition, to qualify as a graduate of Cyber Security, Financial Computing or Multimedia Computing Stream, candidates must pass at least 4 stream specific courses (at least 24 credits in total) in the corresponding subject group, and undertake a dissertation or a project (COMP7704 or COMP7705) in the area of the corresponding stream.

A. Cyber Security
COMP7806. Topic in information security
COMP7901. Legal protection of digital property
COMP7903. Digital investigation and forensics
COMP7904. Information security: attacks and defense
COMP7905. Reverse engineering and malware analysis
COMP7906. Introduction to cyber security
FITE7410. Financial fraud analytics

B. Financial Computing
COMP7103. Data mining
COMP7408. Distributed ledger and blockchain technology
COMP7409. Machine Learning in Trading and Finance
COMP7802. Introduction to financial computing
COMP7808. Topic in financial computing
COMP7906. Introduction to cyber security
FITE7405. Techniques in computational finance
FITE7406. Software development for quantitative finance
FITE7407. Securities transaction banking
FITE7410. Financial fraud analytics

C. Multimedia Computing
COMP7502. Image processing and computer vision
COMP7503. Multimedia technologies
COMP7504. Pattern recognition and applications
COMP7505. User interface design and development
COMP7506. Smart phone apps development
COMP7507. Visualization and visual analytics
COMP7604. Game design and development
COMP7807. Topic in multimedia computing

D. Other discipline courses
COMP7104. Advanced database systems
COMP7105. Advanced topics in data science
COMP7106. Big data management
COMP7201. Analysis and design of enterprise applications in UML
COMP7305. Cluster and cloud computing
COMP7308. Introduction to unmanned systems
COMP7309. Quantum computing and artificial intelligence
COMP7404. Computational intelligence and machine learning
COMP7801. Topic in computer science
COPM7805. Topic in computer network and systems
COMP7809. Topic in artificial intelligence
DASC7606. Deep learning

Candidate may select no more than 2 courses (at most 12 credits in total) offered by other taught postgraduate curricula in the Faculty of Engineering as electives. All course selection will be subject to approval by the Programme Director and Course coordinators concerned.

MSc(CompSc) Course descriptions

The following is a list of discipline courses offered by the Department of Computer Science for the MSc(CompSc) curriculum. The list below is not final and some courses may not be offered every year.

All courses are assessed through examination and / or coursework assessment, the weightings of which are subject to approval by the Board of Examiners.

COMP7103. Data mining (6 credits)

Data mining is the automatic discovery of statistically interesting and potentially useful patterns from large amounts of data. The goal of the course is to study the main methods used today for data mining and on-line analytical processing. Topics include Data Mining Architecture; Data Preprocessing; Mining Association Rules; Classification; Clustering; On-Line Analytical Processing (OLAP); Data Mining Systems and Languages; Advanced Data Mining (Web, Spatial, and Temporal data).

COMP7104. Advanced database systems (6 credits)

The course will study some advanced topics and techniques in database systems, with a focus on the aspects of database systems design & algorithms and big data processing. Traditional topics include: query optimization, physical database design, transaction management, crash recovery, parallel databases. It will survey the recent developments in selected areas such as NoSQL databases and big data management systems.

COMP7105. Advanced topics in data science (6 credits)

This course will introduce selected advanced computational methods and apply them to problems in data analysis and relevant applications.

COMP7106. Big data management (6 credits)

The course will study some advanced topics and techniques in Big Data. It will also survey the recent development and progress in specific areas in big data management and scalable data science. Topics include but not limited to: large database management techniques, spatial data management and spatial networks, data quality and uncertain databases, top-k queries, graph and text databases, and data analytics.
COMP7201. Analysis and design of enterprise applications in UML (6 credits)

This course presents an industrial-strength approach to software development based on object-oriented modelling of business entities. Topics include: overview of software engineering and object-oriented concepts; unified process and Unified Modelling Language (UML); use-case modelling and object modelling; dynamic modelling using sequence diagrams and state machines; object-oriented design; modern web design; introducing design patterns and enterprise applications; shortcomings of UML and remedies. Emphasis will be given on hands-on exercises with the use of CASE tools.

Prerequisites: A course in object-oriented programming and a course in software engineering or systems analysis and design.

COMP7305. Cluster and cloud computing (6 credits)

This course offers an overview of current cloud technologies, and discusses various issues in the design and implementation of cloud systems. Topics include cloud delivery models (SaaS, PaaS, and IaaS) with motivating examples from Google, Amazon, and Microsoft; virtualization techniques implemented in Xen, KVM, VMWare, and Docker; distributed file systems, such as Hadoop file system; MapReduce and Spark programming models for large-scale data analysis, networking techniques in cluster and hyper-scale data centers. The students will learn the use of Amazon EC2 to deploy applications on cloud, and implement a SPARK application on a Xen-enabled PC cluster as part of their term project.

Prerequisites: The students are expected to install various open-source cloud software in their Linux cluster, and exercise the system configuration and administration. Basic understanding of Linux operating system and some programming experiences (C/C++, Java, or Python) in a Linux environment are required.

COMP7308. Introduction to unmanned systems (6 credits)

To study the theory and algorithms in unmanned systems. Topics include vehicle modelling, vehicle control, state estimation, perception and mapping, motion planning, and deep learning related techniques.

COMP7309. Quantum computing and artificial intelligence (6 credits)

This course offers an introduction to the interdisciplinary fields of quantum computation and quantum AI. The focus will lie on an accessible introduction to the elementary concepts of quantum mechanics, followed by a comparison between computer science and information science in the quantum domain. The theoretical capability of quantum computers will be illustrated by analyzing fundamental algorithms of quantum computation and their potential applications in AI.

COMP7404. Computational intelligence and machine learning (6 credits)

This course will teach a broad set of principles and tools that will provide the mathematical, algorithmic and philosophical framework for tackling problems using Artificial Intelligence (AI) and Machine Learning (ML). AI and ML are highly interdisciplinary fields with impact in different applications, such as, biology, robotics, language, economics, and computer science. AI is the science and
engineering of making intelligent machines, especially intelligent computer programs, while ML refers to the changes in systems that perform tasks associated with AI. Ethical issues in advanced AI and how to prevent learning algorithms from acquiring morally undesirable biases will be covered.

Topics may include a subset of the following: problem solving by search, heuristic (informed) search, constraint satisfaction, games, knowledge-based agents, supervised learning, unsupervised learning; learning theory, reinforcement learning and adaptive control and ethical challenges of AI and ML.

Pre-requisites: Nil, but knowledge of data structures and algorithms, probability, linear algebra, and programming would be an advantage.

COMP7408. Distributed ledger and blockchain technology (6 credits)

In this course, students will learn the key technical elements behind the blockchain (or in general, the distributed ledger) technology and some advanced features, such as smart contracts, of the technology. Variations, such as permissioned versus permissionless and private blockchains, and the available blockchain platforms will be discussed.

Students will also learn the following issues: the security, efficiency, and the scalability of the technology. Cyber-currency (e.g. Bitcoin) and other typical application examples in areas such as finance will also be introduced.

Prerequisites: COMP7906 Introduction to cyber security or ICOM6045 Fundamentals of e-commerce security and experience in programming is required.

Mutually exclusive with: FITE3011 Distributed Ledger and Blockchain

COMP7409. Machine Learning in Trading and Finance (6 credits)

The course introduces our students to the field of Machine Learning, and help them develop skills of applying Machine Learning, or more precisely, applying supervised learning, unsupervised learning and reinforcement learning to solve problems in Trading and Finance.

This course will cover the following topics. (1) Overview of Machine Learning and Artificial Intelligence, (2) Supervised Learning, Unsupervised Learning and Reinforcement Learning, (3) Major algorithms for Supervised Learning and Unsupervised Learning with applications to Trading and Finance, (4) Basic algorithms for Reinforcement Learning with applications to optimal trading, asset management, and portfolio optimization, (5) Advanced methods of Reinforcement Learning with applications to high-frequency trading, cryptocurrency trading and peer-to-peer lending.

COMP7502. Image processing and computer vision (6 credits)

To study the theory and algorithms in image processing and computer vision. Topics include image representation; image enhancement; image restoration; mathematical morphology; image compression; scene understanding and motion analysis.

COMP7503. Multimedia technologies (6 credits)

This course presents fundamental concepts and emerging technologies for multimedia computing. Students are expected to learn how to develop various kinds of media communication, presentation, and manipulation techniques. At the end of course, students should acquire proper skill set to utilize,
integrate and synchronize different information and data from media sources for building specific multimedia applications. Topics include media data acquisition methods and techniques; nature of perceptually encoded information; processing and manipulation of media data; multimedia content organization and analysis; trending technologies for future multimedia computing.

COMP7504. Pattern recognition and applications (6 credits)

To study techniques in pattern recognition. Topics include statistical decision theory; density estimation; dimension reduction; discriminant functions; unsupervised classification and clustering; neural network; hidden Markov model; and selected applications in pattern recognition such as characters and speech recognition.

COMP7505. User interface design and development (6 credits)

For technology products and services, the user experience is a major key to success. With advanced development of processors, sensors, and new algorithms and software tools, more powerful and expressive user interfaces can be implemented to improve human computer interaction and operation. The course will study matching input and output devices with user capabilities, software and hardware considerations, interface design methodologies, and future interface technologies. All of these topics will be supported and demonstrated with current research and actual case studies.

COMP7506. Smart phone apps development (6 credits)

Smart phones have become very popular in recent years. The number of smart phone users worldwide today surpasses three billion and is forecast to further grow by several hundred million in the next few years. Smart phones play an important role in mobile communication and applications.

Smart phones are powerful as they support a wide range of applications (called apps). Most of the time, smart phone users just purchase their favorite apps wirelessly from the vendors. There is a great potential for software developer to reach worldwide users.

This course aims at introducing the design issues of smart phone apps. For examples, the smart phone screen is usually much smaller than the computer monitor. We have to pay special attention to this aspect in order to develop attractive and successful apps. Various modern smart phone apps development environments and programming techniques (such as Java for Android phones and Swift for iPhones) will also be introduced to facilitate students to develop their own apps.

Students should have basic programming knowledge.

COMP7507. Visualization and visual analytics (6 credits)

This course introduces the basic principles and techniques in visualization and visual analytics, and their applications. Topics include human visual perception; color; visualization techniques for spatial, geospatial and multivariate data, graphs and networks; text and document visualization; scientific visualization; interaction and visual analysis.
COMP7604. Game design and development (6 credits)

The course studies the basic concepts and techniques for digital game design and development. Topics include: game history and genres, game design process, game production, 2D/3D graphics, physics, audio/visual design, artificial intelligence.

Prerequisites: Basic programming skill, e.g. C++ or Java, is required

COMP7704. Dissertation (24 credits)

Candidate will be required to carry out independent work on a major project that will culminate in the writing of a dissertation.

COMP7705. Project (12 credits)

Candidate will be required to carry out independent work on a major project under the supervision of individual staff member. A written report is required.

COMP7801. Topic in computer science (6 credits)

Selected topics that are of current interest will be discussed.

COMP7802. Introduction to financial computing (6 credits)

This course introduces the students to different aspects of financial computing in the investment banking area. The topics include yield curve construction in practice, financial modelling and modern risk management practice, etc. Financial engineering is an area of growing demand. The course is a combination of financial product knowledge, financial mathematics and computational techniques. This course will be suitable for students who want to pursue a career in this fast growing area.

Prerequisites: This course does not require any prior knowledge in the area of finance. Basic calculus and numeric computational techniques are useful. Knowledge in Excel spreadsheet operations is required to complete the assignments and final project.

COMP7805. Topic in computer network and systems (6 credits)

Selected topics in computer network and systems that are of current interest will be discussed.

COMP7806. Topic in information security (6 credits)

Selected topics in information security that are of current interest will be discussed.

COMP7807. Topic in multimedia computing (6 credits)

Selected topics in multimedia computing that are of current interest will be discussed.
COMP7808. Topic in financial computing (6 credits)

Selected topics in financial computing that are of current interest will be discussed.

COMP7809. Topic in artificial intelligence (6 credits)

Selected topics in artificial intelligence that are of current interest will be discussed.

COMP7901. Legal protection of digital property (6 credits)

This course introduces computer professionals to the various legal means of protecting digital property including computer software, algorithms, and any work or innovation in digital form. Focus is on the main issues in protecting digital property arising from developments in information technology, and their legal solutions. Topics covered include, but are not limited to, the following: 1) Copyright protection of software and websites, 2) Patent protection of software and algorithms, 3) Protection of personal data.

Mutually exclusive with: ECOM6004 Legal aspects of IT and e-commerce

COMP7903. Digital investigation and forensics (6 credits)

This course introduces the fundamental principles of digital investigation and forensics. The course starts with a brief introduction to common computer crimes and digital evidence, and then moves on to the computer basics and network basics pertaining to digital forensics, and finally comes to the techniques for digital investigation and forensic examination.

COMP7904. Information security: attacks and defense (6 credits)

This is an ethical hacking course. In this course, we will teach students how to conduct ethical hacking so as to better protect a computer system in a company. Topics include physical security, password cracking, network hacking, operating system hacking, and application hacking. The course will also discuss R&D problems related to hacking and defence. The course will try to strike a balance between theory and practice so that students can understand the theories behind the hacking process as well as get enough hands-on exercises to perform ethical hacking and defense.

Prerequisites: Students are expected to have knowledge in university level mathematics and systems plus experience in programming.

COMP7905. Reverse engineering and malware analysis (6 credits)

This course provides students a foundational knowledge about reverse engineering and malware analysis, through the study of various cases and hand-on analysis of malware samples. It covers fundamental concepts in malware investigations so as to equip the students with enough background knowledge in handling malicious software attacks. Various malware incidents will be covered, such as cases in Ransomware, banking-trojan, state-sponsored and APT attacks, cases in Stuxnet and malicious software attacks on Industrial Control System and IoT devices. With the experience of studying these cases and analyzing selected samples, the students will be able to understand the global cyber security landscape and its future impact. Hands-on exercises and in-depth discussion will be provided to enable students to acquire the required knowledge and skill set for defending and protecting an enterprise.
network environment.

Students should have programming/development skills (Assembly, C, C++, Python) and knowledge in Operating System and computer network.

COMP7906. Introduction to cyber security (6 credits)

The aim of the course is to introduce different methods of protecting information and data in the cyber world, including the privacy issue. Topics include introduction to security; cyber attacks and threats; cryptographic algorithms and applications; network security and infrastructure.

Mutually exclusive with: ICOM6045 Fundamentals of e-commerce security

DASC7606. Deep learning (6 credits)

Machine learning is a fast-growing field in computer science and deep learning is the cutting edge technology that enables machines to learn from large-scale and complex datasets. Ethical implications of deep learning and its applications will be covered and the course will focus on how deep neural networks are applied to solve a wide range of problems in areas such as natural language processing, and image processing. Other applications such as financial predictions, game playing and robotics may also be covered. Topics covered include linear and logistic regression, artificial neural networks and how to train them, recurrent neural networks, convolutional neural networks, generative models, deep reinforcement learning, and unsupervised feature learning.

Prerequisites: Basic programming skills, e.g., Python is required.

FITE7405. Techniques in computational finance (6 credits)

This course introduces the major computation problems in the field of financial derivatives and various computational methods/techniques for solving these problems. The lectures start with a short introduction on various financial derivative products, and then move to the derivation of the mathematical models employed in the valuation of these products, and finally come to the solving techniques for the models.

Pre-requisites: No prior finance knowledge is required. Students are assumed to have basic competence in calculus and probability (up to the level of knowing the concepts of random variables, normal distributions, etc.). Knowledge in at least one programming language is required for the assignments/final project.

FITE7406. Software development for quantitative finance (6 credits)

This course introduces the tools and technologies widely used in industry for building applications for Quantitative Finance. From analysis and design to development and implementation, this course covers: modeling financial data and designing financial application using UML, a de facto industry standard for object oriented design and development; applying design patterns in financial application; basic skills on translating financial mathematics into spreadsheets using Microsoft Excel and VBA; developing Excel C++ add-ins for financial computation.

Pre-requisites: This course assumes basic understanding of financial concepts covered in COMP7802. Experience in C++/C programming is required.
FITE7407. Securities transaction banking (6 credits)

The course introduces the business and technology scenarios in the field of Transaction Banking for financial markets. It balances the economic and financial considerations for products and markets with the organizational and technological requirements to successfully implement a banking function in this scenario. It is a crossover between studies of economics, finance and information technology, and features the concepts from basics of the underlying financial products to the latest technology of tokenization of assets on a Blockchain.

FITE7410. Financial fraud analytics (6 credits)

This course aims at introducing various analytics techniques to fight against financial fraud. These analytics techniques include, descriptive analytics, predictive analytics, and social network learning. Various data set will also be introduced, including labeled or unlabeled data sets, and social network data set. Students learn the fraud patterns through applying the analytics techniques in financial frauds, such as, insurance fraud, credit card fraud, etc.

Key topics include: Handling of raw data sets for fraud detection; Applications of descriptive analytics, predictive analytics and social network analytics to construct fraud detection models; Financial Fraud Analytics challenges and issues when applied in business context.

Required to have basic knowledge about statistics concepts.
SYLLABUSES FOR THE DEGREE OF
MASTER OF SCIENCE IN COMPUTER SCIENCE

[This syllabus is applicable to students admitted to the curriculum in the academic years 2019-20 and 2020-21.]

Definition and Terminology

Stream of study – a specialisation in the curriculum selected by a candidate which can be General, Cyber Security, Financial Computing and Multimedia Computing.

Discipline course – any course on a list of courses in the discipline of curriculum which a candidate must pass at least a certain number of credits as specified in the Regulations.

Subject group – a subset of courses in the list of discipline courses which have the same specialisation.

Stream specific course – any course in a subject group which corresponds to the specialisation of the stream of study.

Elective course – any Taught Postgraduate level course offered by the Departments of the Faculty of Engineering for the fulfilment of the curriculum requirements of the degree of MSc in Computer Science that are not classified as discipline courses.

Capstone Experience – a 12-credit project or a 24-credit dissertation which is a compulsory and integral part of the curriculum.

Curriculum Structure

Candidates are required to complete 72 credits of courses as set out below, normally over one academic year of full-time study or two academic years of part-time study:

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Enrolment Mode of 10 courses + Project</th>
<th>Enrolment Mode of 8 courses + Dissertation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline Courses</td>
<td>Not less than 48</td>
<td>Not less than 36</td>
</tr>
<tr>
<td></td>
<td>[Include at least 24 credits in Stream Specific Courses in the candidate’s corresponding stream of study]</td>
<td>[Include at least 24 credits in Stream Specific Courses in the candidate’s corresponding stream of study]</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>Not more than 12</td>
<td>Not more than 12</td>
</tr>
<tr>
<td>Capstone Experience</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>72</td>
</tr>
</tbody>
</table>
Enrolment Mode

Candidates are required to successfully complete 72 credits to graduate. They can do that by studying in one of the following enrolment modes:

(a) 10 courses (each equivalent to 6 credits) + Project (equivalent to 12 credits)

OR

(b) 8 courses (each equivalent to 6 credits) + Dissertation (equivalent to 24 credits)

Course Selection

Candidates shall select courses in accordance with the regulations of the degree. For General Stream, candidate can choose any discipline courses listed below in any subject group, and undertake a dissertation or a project (COMP7704 or COMP7705) in any area in computer science. In addition, to qualify as a graduate of Cyber Security, Financial Computing or Multimedia Computing Stream, candidates must pass at least 4 stream specific courses (at least 24 credits in total) in the corresponding subject group, and undertake a dissertation or a project (COMP7704 or COMP7705) in the area of the corresponding stream.

A. Cyber Security
COMP7806. Topic in information security
COMP7901. Legal protection of digital property
COMP7903. Digital investigation and forensics
COMP7904. Information security: attacks and defense
COMP7905. Reverse engineering and malware analysis
COMP7906. Introduction to cyber security
FITE7410. Financial fraud analytics

B. Financial Computing
COMP7103. Data mining
COMP7405. Techniques in computational finance
COMP7406. Software development for quantitative finance
COMP7407. Securities transaction banking
COMP7408. Distributed ledger and blockchain technology
COMP7409. Machine Learning in Trading and Finance
COMP7802. Introduction to financial computing
COMP7808. Topic in financial computing
COMP7906. Introduction to cyber security
FITE7405. Techniques in computational finance
FITE7406. Software development for quantitative finance
FITE7407. Securities transaction banking
FITE7410. Financial fraud analytics

C. Multimedia Computing
COMP7502. Image processing and computer vision
COMP7503. Multimedia technologies
COMP7504. Pattern recognition and applications
COMP7505. User interface design and development
COMP7506. Smart phone apps development
COMP7507. Visualization and visual analytics
COMP7604. Game design and development
COMP7807. Topic in multimedia computing

D. Other discipline courses
COMP7104. Advanced database systems
COMP7105. Advanced topics in data science
Candidate may select no more than 2 courses (at most 12 credits in total) offered by other taught postgraduate curricula in the Faculty of Engineering as electives. All course selection will be subject to approval by the Programme Director and Course coordinators concerned.

MSc(CompSc) Course descriptions

The following is a list of discipline courses offered by the Department of Computer Science for the MSc(CompSc) curriculum. The list below is not final and some courses may not be offered every year.

All courses are assessed through examination and / or coursework assessment, the weightings of which are subject to approval by the Board of Examiners.

COMP7103. Data mining (6 credits)

Data mining is the automatic discovery of statistically interesting and potentially useful patterns from large amounts of data. The goal of the course is to study the main methods used today for data mining and on-line analytical processing. Topics include Data Mining Architecture; Data Preprocessing; Mining Association Rules; Classification; Clustering; On-Line Analytical Processing (OLAP); Data Mining Systems and Languages; Advanced Data Mining (Web, Spatial, and Temporal data).

COMP7104. Advanced database systems (6 credits)

The course will study some advanced topics and techniques in database systems, with a focus on the aspects of database systems design & algorithms and big data processing. Traditional topics include: query optimization, physical database design, transaction management, crash recovery, parallel databases. It will survey the recent developments in selected areas such as NoSQL databases and big data management systems.

COMP7105. Advanced topics in data science (6 credits)

This course will introduce selected advanced computational methods and apply them to problems in data analysis and relevant applications.

COMP7106. Big data management (6 credits)

The course will study some advanced topics and techniques in Big Data. It will also survey the recent development and progress in specific areas in big data management and scalable data science. Topics include but not limited to: large database management techniques, spatial data management and spatial
networks, data quality and uncertain databases, top-k queries, graph and text databases, and data analytics.

COMP7201. Analysis and design of enterprise applications in UML (6 credits)

This course presents an industrial-strength approach to software development based on object-oriented modelling of business entities. Topics include: overview of software engineering and object-oriented concepts; unified process and Unified Modelling Language (UML); use-case modelling and object modelling; dynamic modelling using sequence diagrams and state machines; object-oriented design; modern web design; introducing design patterns and enterprise applications; shortcomings of UML and remedies. Emphasis will be given on hands-on exercises with the use of CASE tools.

Prerequisites: A course in object-oriented programming and a course in software engineering or systems analysis and design.

COMP7305. Cluster and cloud computing (6 credits)

This course offers an overview of current cloud technologies, and discusses various issues in the design and implementation of cloud systems. Topics include cloud delivery models (SaaS, PaaS, and IaaS) with motivating examples from Google, Amazon, and Microsoft; virtualization techniques implemented in Xen, KVM, VMWare, and Docker; distributed file systems, such as Hadoop file system; MapReduce and Spark programming models for large-scale data analysis, networking techniques in cluster and hyper-scale data centers. The students will learn the use of Amazon EC2 to deploy applications on cloud, and implement a SPARK application on a Xen-enabled PC cluster as part of their term project.

Prerequisites: The students are expected to install various open-source cloud software in their Linux cluster, and exercise the system configuration and administration. Basic understanding of Linux operating system and some programming experiences (C/C++, Java, or Python) in a Linux environment are required.

COMP7308. Introduction to unmanned systems (6 credits)

To study the theory and algorithms in unmanned systems. Topics include vehicle modelling, vehicle control, state estimation, perception and mapping, motion planning, and deep learning related techniques.

COMP7309. Quantum computing and artificial intelligence (6 credits)

This course offers an introduction to the interdisciplinary fields of quantum computation and quantum AI. The focus will lie on an accessible introduction to the elementary concepts of quantum mechanics, followed by a comparison between computer science and information science in the quantum domain. The theoretical capability of quantum computers will be illustrated by analyzing fundamental algorithms of quantum computation and their potential applications in AI.

COMP7404. Computational intelligence and machine learning (6 credits)

This course will teach a broad set of principles and tools that will provide the mathematical, algorithmic and philosophical framework for tackling problems using Artificial Intelligence (AI) and Machine
Learning (ML). AI and ML are highly interdisciplinary fields with impact in different applications, such as, biology, robotics, language, economics, and computer science. AI is the science and engineering of making intelligent machines, especially intelligent computer programs, while ML refers to the changes in systems that perform tasks associated with AI. Ethical issues in advanced AI and how to prevent learning algorithms from acquiring morally undesirable biases will be covered.

Topics may include a subset of the following: problem solving by search, heuristic (informed) search, constraint satisfaction, games, knowledge-based agents, supervised learning, unsupervised learning; learning theory, reinforcement learning and adaptive control and ethical challenges of AI and ML.

Pre-requisites: Nil, but knowledge of data structures and algorithms, probability, linear algebra, and programming would be an advantage.

COMP7405. Techniques in computational finance (6 credits)

This course introduces the major computation problems in the field of financial derivatives and various computational methods/techniques for solving these problems. The lectures start with a short introduction on various financial derivative products, and then move to the derivation of the mathematical models employed in the valuation of these products, and finally come to the solving techniques for the models.

Pre-requisites: No prior finance knowledge is required. Students are assumed to have basic competence in calculus and probability (up to the level of knowing the concepts of random variables, normal distributions, etc.). Knowledge in at least one programming language is required for the assignments/final project.

Mutually exclusive with: FITE7405 Techniques in computational finance

COMP7406. Software development for quantitative finance (6 credits)

This course introduces the tools and technologies widely used in industry for building applications for Quantitative Finance. From analysis and design to development and implementation, this course covers: modeling financial data and designing financial application using UML, a de facto industry standard for object oriented design and development; applying design patterns in financial application; basic skills on translating financial mathematics into spreadsheets using Microsoft Excel and VBA; developing Excel C++ add-ins for financial computation.

Pre-requisites: This course assumes basic understanding of financial concepts covered in COMP7802. Experience in C++/C programming is required.

Mutually exclusive with: FITE7406 Software development for quantitative finance

COMP7407. Securities transaction banking (6 credits)

The course introduces the business and technology scenarios in the field of Transaction Banking for financial markets. It balances the economic and financial considerations for products and markets with the organizational and technological requirements to successfully implement a banking function in this scenario. It is a crossover between studies of economics, finance and information technology, and features the concepts from basics of the underlying financial products to the latest technology of tokenization of assets on a Blockchain.
COMP7408. Distributed ledger and blockchain technology (6 credits)

In this course, students will learn the key technical elements behind the blockchain (or in general, the distributed ledger) technology and some advanced features, such as smart contracts, of the technology. Variations, such as permissioned versus permissionless and private blockchains, and the available blockchain platforms will be discussed.

Students will also learn the following issues: the security, efficiency, and the scalability of the technology. Cyber-currency (e.g. Bitcoin) and other typical application examples in areas such as finance will also be introduced.

Prerequisites: COMP7906 Introduction to cyber security or ICOM6045 Fundamentals of e-commerce security and experience in programming is required.

Mutually exclusive with: FITE3011 Distributed Ledger and Blockchain

COMP7409. Machine Learning in Trading and Finance (6 credits)

The course introduces our students to the field of Machine Learning, and help them develop skills of applying Machine Learning, or more precisely, applying supervised learning, unsupervised learning and reinforcement learning to solve problems in Trading and Finance.

This course will cover the following topics. (1) Overview of Machine Learning and Artificial Intelligence, (2) Supervised Learning, Unsupervised Learning and Reinforcement Learning, (3) Major algorithms for Supervised Learning and Unsupervised Learning with applications to Trading and Finance, (4) Basic algorithms for Reinforcement Learning with applications to optimal trading, asset management, and portfolio optimization, (5) Advanced methods of Reinforcement Learning with applications to high-frequency trading, cryptocurrency trading and peer-to-peer lending.

COMP7502. Image processing and computer vision (6 credits)

To study the theory and algorithms in image processing and computer vision. Topics include image representation; image enhancement; image restoration; mathematical morphology; image compression; scene understanding and motion analysis.

COMP7503. Multimedia technologies (6 credits)

This course presents fundamental concepts and emerging technologies for multimedia computing. Students are expected to learn how to develop various kinds of media communication, presentation, and manipulation techniques. At the end of course, students should acquire proper skill set to utilize, integrate and synchronize different information and data from media sources for building specific multimedia applications. Topics include media data acquisition methods and techniques; nature of perceptually encoded information; processing and manipulation of media data; multimedia content organization and analysis; trending technologies for future multimedia computing.

COMP7504. Pattern recognition and applications (6 credits)

To study techniques in pattern recognition. Topics include statistical decision theory; density estimation; dimension reduction; discriminant functions; unsupervised classification and clustering;
neural network; hidden Markov model; and selected applications in pattern recognition such as characters and speech recognition.

COMP7505. User interface design and development (6 credits)

For technology products and services, the user experience is a major key to success. With advanced development of processors, sensors, and new algorithms and software tools, more powerful and expressive user interfaces can be implemented to improve human computer interaction and operation. The course will study matching input and output devices with user capabilities, software and hardware considerations, interface design methodologies, and future interface technologies. All of these topics will be supported and demonstrated with current research and actual case studies.

COMP7506. Smart phone apps development (6 credits)

Smart phones have become very popular in recent years. The number of smart phone users worldwide today surpasses three billion and is forecast to further grow by several hundred million in the next few years. Smart phones are powerful as they support a wide range of applications (called apps). Most of the time, smart phone users just purchase their favorite apps wirelessly from the vendors. There is a great potential for software developer to reach worldwide users.

This course aims at introducing the design issues of smart phone apps. For examples, the smart phone screen is usually much smaller than the computer monitor. We have to pay special attention to this aspect in order to develop attractive and successful apps. Various modern smart phone apps development environments and programming techniques (such as Java for Android phones and Swift for iPhones) will also be introduced to facilitate students to develop their own apps.

Students should have basic programming knowledge.

COMP7507. Visualization and visual analytics (6 credits)

This course introduces the basic principles and techniques in visualization and visual analytics, and their applications. Topics include human visual perception; color; visualization techniques for spatial, geospatial and multivariate data, graphs and networks; text and document visualization; scientific visualization; interaction and visual analysis.

COMP7604. Game design and development (6 credits)

The course studies the basic concepts and techniques for digital game design and development. Topics include: game history and genres, game design process, game production, 2D/3D graphics, physics, audio/visual design, artificial intelligence.

Prerequisites: Basic programming skill, e.g. C++ or Java, is required

COMP7606. Deep learning (6 credits)

Machine learning is a fast-growing field in computer science and deep learning is the cutting edge technology that enables machines to learn from large-scale and complex datasets. Ethical implications
of deep learning and its applications will be covered and the course will focus on how deep neural networks are applied to solve a wide range of problems in areas such as natural language processing, and image processing. Other applications such as financial predictions, game playing and robotics may also be covered. Topics covered include linear and logistic regression, artificial neural networks and how to train them, recurrent neural networks, convolutional neural networks, generative models, deep reinforcement learning, and unsupervised feature learning.

Prerequisites: Basic programming skills, e.g., Python is required.

Mutually exclusive with: DASC7606 Deep learning

COMP7704. Dissertation (24 credits)
Candidate will be required to carry out independent work on a major project that will culminate in the writing of a dissertation.

COMP7705. Project (12 credits)
Candidate will be required to carry out independent work on a major project under the supervision of individual staff member. A written report is required.

COMP7801. Topic in computer science (6 credits)
Selected topics that are of current interest will be discussed.

COMP7802. Introduction to financial computing (6 credits)
This course introduces the students to different aspects of financial computing in the investment banking area. The topics include yield curve construction in practice, financial modelling and modern risk management practice, etc. Financial engineering is an area of growing demand. The course is a combination of financial product knowledge, financial mathematics and computational techniques. This course will be suitable for students who want to pursue a career in this fast growing area.

Prerequisites: This course does not require any prior knowledge in the area of finance. Basic calculus and numeric computational techniques are useful. Knowledge in Excel spreadsheet operations is required to complete the assignments and final project.

COMP7805. Topic in computer network and systems (6 credits)
Selected topics in computer network and systems that are of current interest will be discussed.

COMP7806. Topic in information security (6 credits)
Selected topics in information security that are of current interest will be discussed.
COMP7807. Topic in multimedia computing (6 credits)
Selected topics in multimedia computing that are of current interest will be discussed.

COMP7808. Topic in financial computing (6 credits)
Selected topics in financial computing that are of current interest will be discussed.

COMP7809. Topic in artificial intelligence (6 credits)
Selected topics in artificial intelligence that are of current interest will be discussed.

COMP7901. Legal protection of digital property (6 credits)
This course introduces computer professionals to the various legal means of protecting digital property including computer software, algorithms, and any work or innovation in digital form. Focus is on the main issues in protecting digital property arising from developments in information technology, and their legal solutions. Topics covered include, but are not limited to, the following: 1) Copyright protection of software and websites, 2) Patent protection of software and algorithms, 3) Protection of personal data.

Mutually exclusive with: ECOM6004 Legal aspects of IT and e-commerce

COMP7903. Digital investigation and forensics (6 credits)
This course introduces the fundamental principles of digital investigation and forensics. The course starts with a brief introduction to common computer crimes and digital evidence, and then moves on to the computer basics and network basics pertaining to digital forensics, and finally comes to the techniques for digital investigation and forensic examination.

COMP7904. Information security: attacks and defense (6 credits)
This is an ethical hacking course. In this course, we will teach students how to conduct ethical hacking so as to better protect a computer system in a company. Topics include physical security, password cracking, network hacking, operating system hacking, and application hacking. The course will also discuss R&D problems related to hacking and defence. The course will try to strike a balance between theory and practice so that students can understand the theories behind the hacking process as well as get enough hands-on exercises to perform ethical hacking and defense.

Prerequisites: Students are expected to have knowledge in university level mathematics and systems plus experience in programming.

COMP7905. Reverse engineering and malware analysis (6 credits)
This course provides students a foundational knowledge about reverse engineering and malware analysis, through the study of various cases and hand-on analysis of malware samples. It covers fundamental concepts in malware investigations so as to equip the students with enough background knowledge in handling malicious software attacks. Various malware incidents will be covered, such as
cases in Ransomware, banking-trojan, state-sponsored and APT attacks, cases in Stuxnet and malicious software attacks on Industrial Control System and IoT devices. With the experience of studying these cases and analyzing selected samples, the students will be able to understand the global cyber security landscape and its future impact. Hands-on exercises and in-depth discussion will be provided to enable students to acquire the required knowledge and skill set for defending and protecting an enterprise network environment.

Students should have programming/development skills (Assembly, C, C++, Python) and knowledge in Operating System and computer network.

COMP7906. Introduction to cyber security (6 credits)

The aim of the course is to introduce different methods of protecting information and data in the cyber world, including the privacy issue. Topics include introduction to security; cyber attacks and threats; cryptographic algorithms and applications; network security and infrastructure.

Mutually exclusive with: ICOM6045 Fundamentals of e-commerce security

DASC7606. Deep learning (6 credits)

Machine learning is a fast-growing field in computer science and deep learning is the cutting edge technology that enables machines to learn from large-scale and complex datasets. Ethical implications of deep learning and its applications will be covered and the course will focus on how deep neural networks are applied to solve a wide range of problems in areas such as natural language processing, and image processing. Other applications such as financial predictions, game playing and robotics may also be covered. Topics covered include linear and logistic regression, artificial neural networks and how to train them, recurrent neural networks, convolutional neural networks, generative models, deep reinforcement learning, and unsupervised feature learning.

Prerequisites: Basic programming skills, e.g., Python is required.

Mutually exclusive with: COMP7606 Deep learning

FITE7405. Techniques in computational finance (6 credits)

This course introduces the major computation problems in the field of financial derivatives and various computational methods/techniques for solving these problems. The lectures start with a short introduction on various financial derivative products, and then move to the derivation of the mathematical models employed in the valuation of these products, and finally come to the solving techniques for the models.

Pre-requisites: No prior finance knowledge is required. Students are assumed to have basic competence in calculus and probability (up to the level of knowing the concepts of random variables, normal distributions, etc.). Knowledge in at least one programming language is required for the assignments/final project.

Mutually exclusive with: COMP7405 Techniques in computational finance

FITE7406. Software development for quantitative finance (6 credits)

This course introduces the tools and technologies widely used in industry for building applications for
Quantitative Finance. From analysis and design to development and implementation, this course covers: modeling financial data and designing financial application using UML, a de facto industry standard for object oriented design and development; applying design patterns in financial application; basic skills on translating financial mathematics into spreadsheets using Microsoft Excel and VBA; developing Excel C++ add-ins for financial computation.

Pre-requisites: This course assumes basic understanding of financial concepts covered in COMP7802. Experience in C++/C programming is required.

Mutually exclusive with: COMP7406 Software development for quantitative finance

FITE7407. Securities transaction banking (6 credits)

The course introduces the business and technology scenarios in the field of Transaction Banking for financial markets. It balances the economic and financial considerations for products and markets with the organizational and technological requirements to successfully implement a banking function in this scenario. It is a crossover between studies of economics, finance and information technology, and features the concepts from basics of the underlying financial products to the latest technology of tokenization of assets on a Blockchain.

Mutually exclusive with: COMP7407 Securities transaction banking

FITE7410. Financial fraud analytics (6 credits)

This course aims at introducing various analytics techniques to fight against financial fraud. These analytics techniques include, descriptive analytics, predictive analytics, and social network learning. Various data set will also be introduced, including labeled or unlabeled data sets, and social network data set. Students learn the fraud patterns through applying the analytics techniques in financial frauds, such as, insurance fraud, credit card fraud, etc.

Key topics include: Handling of raw data sets for fraud detection; Applications of descriptive analytics, predictive analytics and social network analytics to construct fraud detection models; Financial Fraud Analytics challenges and issues when applied in business context.

Required to have basic knowledge about statistics concepts.
SYLLABUSES FOR THE DEGREE OF
MASTER OF SCIENCE IN COMPUTER SCIENCE

[This syllabus is applicable to students admitted to the curriculum in the academic year 2018-19.]

Definition and Terminology

Stream of study – a specialisation in the curriculum selected by a candidate which can be General, Cyber Security, Financial Computing and Multimedia Computing.

Discipline course – any course on a list of courses in the discipline of curriculum which a candidate must pass at least a certain number of credits as specified in the Regulations.

Subject group – a subset of courses in the list of discipline courses which have the same specialisation.

Stream specific course – any course in a subject group which corresponds to the specialisation of the stream of study.

Elective course – any Taught Postgraduate level course offered by the Departments of the Faculty of Engineering for the fulfilment of the curriculum requirements of the degree of MSc in Computer Science that are not classified as discipline courses.

Capstone Experience – a 12-credit project or a 24-credit dissertation which is a compulsory and integral part of the curriculum.

Curriculum Structure

Candidates are required to complete 72 credits of courses as set out below, normally over one academic year of full-time study or two academic years of part-time study:

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Enrolment Mode of 10 courses + Project</th>
<th>Enrolment Mode of 8 courses + Dissertation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline Courses</td>
<td>Not less than 48 [Include at least 24 credits in Stream Specific Courses in the candidate’s corresponding stream of study]</td>
<td>Not less than 36 [Include at least 24 credits in Stream Specific Courses in the candidate’s corresponding stream of study]</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>Not more than 12</td>
<td>Not more than 12</td>
</tr>
<tr>
<td>Capstone Experience</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>72</td>
</tr>
</tbody>
</table>
Enrolment Mode

Candidates are required to successfully complete 72 credits to graduate. They can do that by studying in one of the following enrolment modes:

(a) 10 courses (each equivalent to 6 credits) + Project (equivalent to 12 credits)

OR

(b) 8 courses (each equivalent to 6 credits) + Dissertation (equivalent to 24 credits)

Course Selection

Candidates shall select courses in accordance with the regulations of the degree. For General Stream, candidate can choose any discipline courses listed below in any subject group, and undertake a dissertation or a project (COMP7704 or COMP7705) in any area in computer science. In addition, to qualify as a graduate of Cyber Security, Financial Computing or Multimedia Computing Stream, candidates must pass at least 4 stream specific courses (at least 24 credits in total) in the corresponding subject group, and undertake a dissertation or a project (COMP7704 or COMP7705) in the area of the corresponding stream.

A. Cyber Security

COMP7806. Topic in information security
COMP7901. Legal protection of digital property
COMP7903. Digital investigation and forensics
COMP7904. Information security: attacks and defense
COMP7905. Reverse engineering and malware analysis
COMP7906. Introduction to cyber security
FITE7410. Financial fraud analytics

B. Financial Computing

COMP7103. Data mining
COMP7405. Techniques in computational finance
COMP7406. Software development for quantitative finance
COMP7407. Securities transaction banking
COMP7408. Distributed ledger and blockchain technology
COMP7409. Machine Learning in Trading and Finance
COMP7802. Introduction to financial computing
COMP7808. Topic in financial computing
COMP7906. Introduction to cyber security
FITE7405. Techniques in computational finance
FITE7406. Software development for quantitative finance
FITE7407. Securities transaction banking
FITE7410. Financial fraud analytics

C. Multimedia Computing

COMP7502. Image processing and computer vision
COMP7503. Multimedia technologies
COMP7504. Pattern recognition and applications
COMP7505. User interface design and development
COMP7506. Smart phone apps development
COMP7507. Visualization and visual analytics
COMP7604. Game design and development
COMP7605. Advanced multimedia data analysis and applications
COMP7807. Topic in multimedia computing

D. Other discipline courses
Candidate may select no more than 2 courses (at most 12 credits in total) offered by other taught postgraduate curricula in the Faculty of Engineering as electives. All course selection will be subject to approval by the Programme Director and Course coordinators concerned.

MSc(CompSc) Course descriptions

The following is a list of discipline courses offered by the Department of Computer Science for the MSc(CompSc) curriculum. The list below is not final and some courses may not be offered every year.

All courses are assessed through examination and / or coursework assessment, the weightings of which are subject to approval by the Board of Examiners.

COMP7103. Data mining (6 credits)

Data mining is the automatic discovery of statistically interesting and potentially useful patterns from large amounts of data. The goal of the course is to study the main methods used today for data mining and on-line analytical processing. Topics include Data Mining Architecture; Data Preprocessing; Mining Association Rules; Classification; Clustering; On-Line Analytical Processing (OLAP); Data Mining Systems and Languages; Advanced Data Mining (Web, Spatial, and Temporal data).

COMP7104. Advanced database systems (6 credits)

The course will study some advanced topics and techniques in database systems, with a focus on the aspects of database systems design & algorithms and big data processing. Traditional topics include: query optimization, physical database design, transaction management, crash recovery, parallel databases. It will survey the recent developments in selected areas such as NoSQL databases and big data management systems.
COMP7105. **Advanced topics in data science (6 credits)**

This course will introduce selected advanced computational methods and apply them to problems in data analysis and relevant applications.

COMP7106. **Big data management (6 credits)**

The course will study some advanced topics and techniques in Big Data. It will also survey the recent development and progress in specific areas in big data management and scalable data science. Topics include but not limited to: large database management techniques, spatial data management and spatial networks, data quality and uncertain databases, top-k queries, graph and text databases, and data analytics.

COMP7201. **Analysis and design of enterprise applications in UML (6 credits)**

This course presents an industrial-strength approach to software development based on object-oriented modelling of business entities. Topics include: overview of software engineering and object-oriented concepts; unified process and Unified Modelling Language (UML); use-case modelling and object modelling; dynamic modelling using sequence diagrams and state machines; object-oriented design; modern web design; introducing design patterns and enterprise applications; shortcomings of UML and remedies. Emphasis will be given on hands-on exercises with the use of CASE tools.

Prerequisites: A course in object-oriented programming and a course in software engineering or systems analysis and design.

COMP7203. **Modern software design (6 credits)**

The practice of software design has changed markedly in recent years as new approaches to design have gained broad acceptance and several have progressed to become mainstream techniques themselves. This course introduces the principles and practical application of these modern approaches. It first reviews the goals of software design and the qualities that differentiate good designs from bad ones. From this foundation it teaches elemental design patterns, classic design patterns and anti-patterns, refactoring, refactoring to patterns, test-driven design and design for test. Implementation issues, programming idioms and effective use of the language are introduced and discussed where appropriate.

Prerequisites: A course in software engineering or analysis and design of software systems. The course also requires the ability to program in Java and a basic understanding of the UML class and sequence diagrams.

COMP7205. **Enterprise architecture (6 credits)**

This course aims to teach students the practical skills in modeling and developing enterprise IT architectures. It covers different enterprise architecture frameworks, methodologies and practices (such as TOGAF and Zachman). Students will also learn common enterprise integration patterns for implementation of complex enterprise applications based on Service-Oriented Architecture (SOA). New architecture trends (e.g., cloud computing, shared-nothing architecture, column-based database) will also be introduced.
COMP7303. High-performance computing (6 credits)

This course offers an overview of state-of-the-art parallel architectures and programming languages. The students will learn the issues related to the performance of parallel algorithms, and how to design efficient parallel algorithms for parallel machines. Topics include milestones in the history of HPC and its applications; high-performance computing architectures; performance law; modern CPU design; interconnection network and routing techniques; memory hierarchy and cache coherence protocol; parallel algorithm design; parallel programming models and case studies of supercomputers.

COMP7304. The wireless Internet and mobile network (6 credits)

In the recent few years, many new kinds of wireless network such as mobile ad-hoc network and wireless sensor network are under intensive research by researchers worldwide. These networks enhance the quality of human life as they not only facilitate efficient communications among people, they also let people learn more about their surrounding environments. However, have you ever thought of the potential problems induced by these new kinds of networks?

This course aims at introducing to you various kinds of next generation wireless and mobile networks. We will highlight the scenarios, the characteristics and the technologies behind each kind of network. Then based on their design, we will discuss the potential issues that can appear or even be caused by them. Next we will demonstrate how these issues can be resolved by computer science methodologies.

COMP7305. Cluster and cloud computing (6 credits)

This course offers an overview of current cloud technologies, and discusses various issues in the design and implementation of cloud systems. Topics include cloud delivery models (SaaS, PaaS, and IaaS) with motivating examples from Google, Amazon, and Microsoft; virtualization techniques implemented in Xen, KVM, VMWare, and Docker; distributed file systems, such as Hadoop file system; MapReduce and Spark programming models for large-scale data analysis, networking techniques in cluster and hyper-scale data centers. The students will learn the use of Amazon EC2 to deploy applications on cloud, and implement a SPARK application on a Xen-enabled PC cluster as part of their term project.

Prerequisites: The students are expected to install various open-source cloud software in their Linux cluster, and exercise the system configuration and administration. Basic understanding of Linux operating system and some programming experiences (C/C++, Java, or Python) in a Linux environment are required.

COMP7306. Web technologies (6 credits)

This course aims to give students a basic understanding of various Web technologies and their industry applications. Fundamental XML concepts and techniques, such as XML Schema, XSLT, SAX, and DOM, will be introduced. New technologies related to Web 2.0, web services, service oriented architecture (SOA), and cloud computing will be studied, including RSS, ATOM, Ajax, SOAP, WSDL, ebXML.

Prerequisites: basic web programming knowledge, e.g. HTML, JavaScript, and Java.
COMP7307. Advanced real-time embedded systems and applications (6 credits)

This course’s objective is to introduce advanced real-time scheduling techniques, design and implementation considerations for Embedded Systems. It covers topics on real-time scheduling algorithms, microcontroller architecture, Digital Signal Processors (DSP) architecture, System-on-Chips (SoC), real-time operating systems, and case studies on real-time applications.

Prerequisites: Students should have basic knowledge about operating systems.

COMP7308. Introduction to unmanned systems (6 credits)

To study the theory and algorithms in unmanned systems. Topics include vehicle modelling, vehicle control, state estimation, perception and mapping, motion planning, and deep learning related techniques.

COMP7309. Quantum computing and artificial intelligence (6 credits)

This course offers an introduction to the interdisciplinary fields of quantum computation and quantum AI. The focus will lie on an accessible introduction to the elementary concepts of quantum mechanics, followed by a comparison between computer science and information science in the quantum domain. The theoretical capability of quantum computers will be illustrated by analyzing fundamental algorithms of quantum computation and their potential applications in AI.

COMP7403. Computational molecular biology (6 credits)

To introduce computational methods and data structures for analyzing biological data (e.g. DNA, RNA and protein sequences). Typical topics include basics of molecular biology; biological sequence analysis; indexing data structures; RNA secondary structure alignment/prediction and phylogeny.

COMP7404. Computational intelligence and machine learning (6 credits)

This course will teach a broad set of principles and tools that will provide the mathematical, algorithmic and philosophical framework for tackling problems using Artificial Intelligence (AI) and Machine Learning (ML). AI and ML are highly interdisciplinary fields with impact in different applications, such as, biology, robotics, language, economics, and computer science. AI is the science and engineering of making intelligent machines, especially intelligent computer programs, while ML refers to the changes in systems that perform tasks associated with AI. Ethical issues in advanced AI and how to prevent learning algorithms from acquiring morally undesirable biases will be covered.

Topics may include a subset of the following: problem solving by search, heuristic (informed) search, constraint satisfaction, games, knowledge-based agents, supervised learning, unsupervised learning; learning theory, reinforcement learning and adaptive control and ethical challenges of AI and ML.

Pre-requisites: Nil, but knowledge of data structures and algorithms, probability, linear algebra, and programming would be an advantage.

COMP7405. Techniques in computational finance (6 credits)

This course introduces the major computation problems in the field of financial derivatives and various
computational methods/techniques for solving these problems. The lectures start with a short introduction on various financial derivative products, and then move to the derivation of the mathematical models employed in the valuation of these products, and finally come to the solving techniques for the models.

Pre-requisites: No prior finance knowledge is required. Students are assumed to have basic competence in calculus and probability (up to the level of knowing the concepts of random variables, normal distributions, etc.). Knowledge in at least one programming language is required for the assignments/final project.

Mutually exclusive with: FITE7405 Techniques in computational finance

COMP7406. Software development for quantitative finance (6 credits)

This course introduces the tools and technologies widely used in industry for building applications for Quantitative Finance. From analysis and design to development and implementation, this course covers: modeling financial data and designing financial application using UML, a de facto industry standard for object oriented design and development; applying design patterns in financial application; basic skills on translating financial mathematics into spreadsheets using Microsoft Excel and VBA; developing Excel C++ add-ins for financial computation.

Pre-requisites: This course assumes basic understanding of financial concepts covered in COMP7802. Experience in C++/C programming is required.

Mutually exclusive with: FITE7406 Software development for quantitative finance

COMP7407. Securities transaction banking (6 credits)

The course introduces the business and technology scenarios in the field of Transaction Banking for financial markets. It balances the economic and financial considerations for products and markets with the organizational and technological requirements to successfully implement a banking function in this scenario. It is a crossover between studies of economics, finance and information technology, and features the concepts from basics of the underlying financial products to the latest technology of tokenization of assets on a Blockchain.

Mutually exclusive with: FITE7407 Securities transaction banking

COMP7408. Distributed ledger and blockchain technology (6 credits)

In this course, students will learn the key technical elements behind the blockchain (or in general, the distributed ledger) technology and some advanced features, such as smart contracts, of the technology. Variations, such as permissioned versus permissionless and private blockchains, and the available blockchain platforms will be discussed.

Students will also learn the following issues: the security, efficiency, and the scalability of the technology. Cyber-currency (e.g. Bitcoin) and other typical application examples in areas such as finance will also be introduced.

Prerequisites: COMP7906 Introduction to cyber security or ICOM6045 Fundamentals of e-commerce security and experience in programming is required.

Mutually exclusive with: FITE3011 Distributed Ledger and Blockchain
COMP7409. Machine Learning in Trading and Finance (6 credits)

The course introduces our students to the field of Machine Learning, and help them develop skills of applying Machine Learning, or more precisely, applying supervised learning, unsupervised learning and reinforcement learning to solve problems in Trading and Finance.

This course will cover the following topics. (1) Overview of Machine Learning and Artificial Intelligence, (2) Supervised Learning, Unsupervised Learning and Reinforcement Learning, (3) Major algorithms for Supervised Learning and Unsupervised Learning with applications to Trading and Finance, (4) Basic algorithms for Reinforcement Learning with applications to optimal trading, asset management, and portfolio optimization, (5) Advanced methods of Reinforcement Learning with applications to high-frequency trading, cryptocurrency trading and peer-to-peer lending.

COMP7502. Image processing and computer vision (6 credits)

To study the theory and algorithms in image processing and computer vision. Topics include image representation; image enhancement; image restoration; mathematical morphology; image compression; scene understanding and motion analysis.

COMP7503. Multimedia technologies (6 credits)

This course presents fundamental concepts and emerging technologies for multimedia computing. Students are expected to learn how to develop various kinds of media communication, presentation, and manipulation techniques. At the end of course, students should acquire proper skill set to utilize, integrate and synchronize different information and data from media sources for building specific multimedia applications. Topics include media data acquisition methods and techniques; nature of perceptually encoded information; processing and manipulation of media data; multimedia content organization and analysis; trending technologies for future multimedia computing.

COMP7504. Pattern recognition and applications (6 credits)

To study techniques in pattern recognition. Topics include statistical decision theory; density estimation; dimension reduction; discriminant functions; unsupervised classification and clustering; neural network; hidden Markov model; and selected applications in pattern recognition such as characters and speech recognition.

COMP7505. User interface design and development (6 credits)

For technology products and services, the user experience is a major key to success. With advanced development of processors, sensors, and new algorithms and software tools, more powerful and expressive user interfaces can be implemented to improve human computer interaction and operation. The course will study matching input and output devices with user capabilities, software and hardware considerations, interface design methodologies, and future interface technologies. All of these topics will be supported and demonstrated with current research and actual case studies.

COMP7506. Smart phone apps development (6 credits)

Smart phones have become very popular in recent years. The number of smart phone users worldwide today surpasses three billion and is forecast to further grow by several hundred million in the next few years. Smart phones play an important role in mobile communication and applications.
Smart phones are powerful as they support a wide range of applications (called apps). Most of the time, smart phone users just purchase their favorite apps wirelessly from the vendors. There is a great potential for software developer to reach worldwide users.

This course aims at introducing the design issues of smart phone apps. For examples, the smart phone screen is usually much smaller than the computer monitor. We have to pay special attention to this aspect in order to develop attractive and successful apps. Various modern smart phone apps development environments and programming techniques (such as Java for Android phones and Swift for iPhones) will also be introduced to facilitate students to develop their own apps.

Students should have basic programming knowledge.

COMP7507. Visualization and visual analytics (6 credits)

This course introduces the basic principles and techniques in visualization and visual analytics, and their applications. Topics include human visual perception; color; visualization techniques for spatial, geospatial and multivariate data, graphs and networks; text and document visualization; scientific visualization; interaction and visual analysis.

COMP7604. Game design and development (6 credits)

The course studies the basic concepts and techniques for digital game design and development. Topics include: game history and genres, game design process, game production, 2D/3D graphics, physics, audio/visual design, artificial intelligence.

Prerequisites: Basic programming skill, e.g. C++ or Java, is required

COMP7605. Advanced multimedia data analysis and applications (6 credits)

This course’s objective is to introduce advanced multimedia data analysis techniques, and the design and implementation of signal processing algorithms. It covers topics on Digital Filter Realization, Recursive and Non-Recursive filters, Frequency Domain Processing, Two-Dimensional Signal Processing, and application of multimedia signal processing to speech production and analysis, image and video processing.

COMP7606. Deep learning (6 credits)

Machine learning is a fast-growing field in computer science and deep learning is the cutting edge technology that enables machines to learn from large-scale and complex datasets. Ethical implications of deep learning and its applications will be covered and the course will focus on how deep neural networks are applied to solve a wide range of problems in areas such as natural language processing, and image processing. Other applications such as financial predictions, game playing and robotics may also be covered. Topics covered include linear and logistic regression, artificial neural networks and how to train them, recurrent neural networks, convolutional neural networks, generative models, deep reinforcement learning, and unsupervised feature learning.

Prerequisites: Basic programming skills, e.g., Python is required.

Mutually exclusive with: DASC7606 Deep learning
COMP7704. Dissertation (24 credits)

Candidate will be required to carry out independent work on a major project that will culminate in the writing of a dissertation.

COMP7705. Project (12 credits)

Candidate will be required to carry out independent work on a major project under the supervision of individual staff member. A written report is required.

COMP7801. Topic in computer science (6 credits)

Selected topics that are of current interest will be discussed.

COMP7802. Introduction to financial computing (6 credits)

This course introduces the students to different aspects of financial computing in the investment banking area. The topics include yield curve construction in practice, financial modelling and modern risk management practice, etc. Financial engineering is an area of growing demand. The course is a combination of financial product knowledge, financial mathematics and computational techniques. This course will be suitable for students who want to pursue a career in this fast growing area.

Prerequisites: This course does not require any prior knowledge in the area of finance. Basic calculus and numeric computational techniques are useful. Knowledge in Excel spreadsheet operations is required to complete the assignments and final project.

COMP7805. Topic in computer network and systems (6 credits)

Selected topics in computer network and systems that are of current interest will be discussed.

COMP7806. Topic in information security (6 credits)

Selected topics in information security that are of current interest will be discussed.

COMP7807. Topic in multimedia computing (6 credits)

Selected topics in multimedia computing that are of current interest will be discussed.

COMP7808. Topic in financial computing (6 credits)

Selected topics in financial computing that are of current interest will be discussed.

COMP7809. Topic in artificial intelligence (6 credits)

Selected topics in artificial intelligence that are of current interest will be discussed.
COMP7901. Legal protection of digital property (6 credits)

This course introduces computer professionals to the various legal means of protecting digital property including computer software, algorithms, and any work or innovation in digital form. Focus is on the main issues in protecting digital property arising from developments in information technology, and their legal solutions. Topics covered include, but are not limited to, the following: 1) Copyright protection of software and websites, 2) Patent protection of software and algorithms, 3) Protection of personal data.

Mutually exclusive with: ECOM6004 Legal aspects of IT and e-commerce

COMP7903. Digital investigation and forensics (6 credits)

This course introduces the fundamental principles of digital investigation and forensics. The course starts with a brief introduction to common computer crimes and digital evidence, and then moves on to the computer basics and network basics pertaining to digital forensics, and finally comes to the techniques for digital investigation and forensic examination.

COMP7904. Information security: attacks and defense (6 credits)

This is an ethical hacking course. In this course, we will teach students how to conduct ethical hacking so as to better protect a computer system in a company. Topics include physical security, password cracking, network hacking, operating system hacking, and application hacking. The course will also discuss R&D problems related to hacking and defence. The course will try to strike a balance between theory and practice so that students can understand the theories behind the hacking process as well as get enough hands-on exercises to perform ethical hacking and defense.

Prerequisites: Students are expected to have knowledge in university level mathematics and systems plus experience in programming.

COMP7905. Reverse engineering and malware analysis (6 credits)

This course provides students a foundational knowledge about reverse engineering and malware analysis, through the study of various cases and hand-on analysis of malware samples. It covers fundamental concepts in malware investigations so as to equip the students with enough background knowledge in handling malicious software attacks. Various malware incidents will be covered, such as cases in Ransomware, banking-trojan, state-sponsored and APT attacks, cases in Stuxnet and malicious software attacks on Industrial Control System and IoT devices. With the experience of studying these cases and analyzing selected samples, the students will be able to understand the global cyber security landscape and its future impact. Hands-on exercises and in-depth discussion will be provided to enable students to acquire the required knowledge and skill set for defending and protecting an enterprise network environment.

Students should have programming/development skills (Assembly, C, C++, Python) and knowledge in Operating System and computer network.

COMP7906. Introduction to cyber security (6 credits)

The aim of the course is to introduce different methods of protecting information and data in the cyber world, including the privacy issue. Topics include introduction to security; cyber attacks and threats;
cryptographic algorithms and applications; network security and infrastructure.

Mutually exclusive with: ICOM6045 Fundamentals of e-commerce security

DASC7606. Deep learning (6 credits)

Machine learning is a fast-growing field in computer science and deep learning is the cutting edge technology that enables machines to learn from large-scale and complex datasets. Ethical implications of deep learning and its applications will be covered and the course will focus on how deep neural networks are applied to solve a wide range of problems in areas such as natural language processing, and image processing. Other applications such as financial predictions, game playing and robotics may also be covered. Topics covered include linear and logistic regression, artificial neural networks and how to train them, recurrent neural networks, convolutional neural networks, generative models, deep reinforcement learning, and unsupervised feature learning.

Prerequisites: Basic programming skills, e.g., Python is required.

Mutually exclusive with: COMP7606 Deep learning

FITE7405. Techniques in computational finance (6 credits)

This course introduces the major computation problems in the field of financial derivatives and various computational methods/techniques for solving these problems. The lectures start with a short introduction on various financial derivative products, and then move to the derivation of the mathematical models employed in the valuation of these products, and finally come to the solving techniques for the models.

Pre-requisites: No prior finance knowledge is required. Students are assumed to have basic competence in calculus and probability (up to the level of knowing the concepts of random variables, normal distributions, etc.). Knowledge in at least one programming language is required for the assignments/final project.

Mutually exclusive with: COMP7405 Techniques in computational finance

FITE7406. Software development for quantitative finance (6 credits)

This course introduces the tools and technologies widely used in industry for building applications for Quantitative Finance. From analysis and design to development and implementation, this course covers: modeling financial data and designing financial application using UML, a de facto industry standard for object oriented design and development; applying design patterns in financial application; basic skills on translating financial mathematics into spreadsheets using Microsoft Excel and VBA; developing Excel C++ add-ins for financial computation.

Pre-requisites: This course assumes basic understanding of financial concepts covered in COMP7802. Experience in C++/C programming is required.

Mutually exclusive with: COMP7406 Software development for quantitative finance
FITE7407. Securities transaction banking (6 credits)

The course introduces the business and technology scenarios in the field of Transaction Banking for financial markets. It balances the economic and financial considerations for products and markets with the organizational and technological requirements to successfully implement a banking function in this scenario. It is a crossover between studies of economics, finance and information technology, and features the concepts from basics of the underlying financial products to the latest technology of tokenization of assets on a Blockchain.

Mutually exclusive with: COMP7407 Securities transaction banking

FITE7410. Financial fraud analytics (6 credits)

This course aims at introducing various analytics techniques to fight against financial fraud. These analytics techniques include, descriptive analytics, predictive analytics, and social network learning. Various data set will also be introduced, including labeled or unlabeled data sets, and social network data set. Students learn the fraud patterns through applying the analytics techniques in financial frauds, such as, insurance fraud, credit card fraud, etc.

Key topics include: Handling of raw data sets for fraud detection; Applications of descriptive analytics, predictive analytics and social network analytics to construct fraud detection models; Financial Fraud Analytics challenges and issues when applied in business context.

Required to have basic knowledge about statistics concepts.
SYLLABUSES FOR THE DEGREE OF
MASTER OF SCIENCE IN COMPUTER SCIENCE

[This syllabus is applicable to students admitted to the curriculum in the academic years 2016-17 and 2017-18.]

Definition and Terminology

Stream of study – a specialisation in the curriculum selected by a candidate which can be General, Financial Computing, Information Security and Multimedia Computing.

Discipline course – any course on a list of courses in the discipline of curriculum which a candidate must pass at least a certain number of credits as specified in the Regulations.

Subject group – a subset of courses in the list of discipline courses which have the same specialisation.

Stream specific course – any course in a subject group which corresponds to the specialisation of the stream of study.

Elective course – any Taught Postgraduate level course offered by the Departments of the Faculty of Engineering for the fulfilment of the curriculum requirements of the degree of MSc in Computer Science that are not classified as discipline courses.

Capstone Experience – a 24-credit dissertation which is a compulsory and integral part of the curriculum.

Curriculum Structure

Candidates are required to complete 72 credits of courses as set out below, normally over one academic year of full-time study or two academic years of part-time study:

<table>
<thead>
<tr>
<th>Course Category</th>
<th>General Stream</th>
<th>Financial Computing / Information Security / Multimedia Computing Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline Courses</td>
<td>Not less than 36</td>
<td>Not less than 36 [Include at least 24 credits in Stream Specific Courses in the candidate’s corresponding stream of study]</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>Not more than 12</td>
<td>Not more than 12</td>
</tr>
<tr>
<td>Capstone Experience</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>72</td>
</tr>
</tbody>
</table>
Course Selection

Candidates shall select courses in accordance with the regulations of the degree. For General Stream, candidate can choose any discipline courses listed below in any subject group, and undertake a dissertation (COMP7704) in any area in computer science. In addition, to qualify as a graduate of Financial Computing, Information Security or Multimedia Computing Stream, candidates must pass at least 4 stream specific courses (at least 24 credits in total) in the corresponding subject group, and undertake a dissertation (COMP7704) in the area of the corresponding stream.

A. Financial Computing
 COMP7103. Data mining
 COMP7405. Techniques in computational finance
 COMP7406. Software development for quantitative finance
 COMP7407. Securities transaction banking
 COMP7408. Distributed ledger and blockchain technology
 COMP7409. Machine Learning in Trading and Finance
 COMP7802. Introduction to financial computing
 COMP7808. Topic in financial computing
 COMP7906. Introduction to cyber security
 FITE7405. Techniques in computational finance
 FITE7406. Software development for quantitative finance
 FITE7407. Securities transaction banking
 FITE7410. Financial fraud analytics

B. Information Security
 COMP7301. Computer and network security
 COMP7804. E-commerce security cases and technologies
 COMP7806. Topic in information security
 COMP7901. Legal protection of digital property
 COMP7903. Digital investigation and forensics
 COMP7904. Information security: attacks and defense
 COMP7905. Reverse engineering and malware analysis
 COMP7906. Introduction to cyber security
 FITE7410. Financial fraud analytics

C. Multimedia Computing
 COMP7502. Image processing and computer vision
 COMP7503. Multimedia technologies
 COMP7504. Pattern recognition and applications
 COMP7505. User interface design and development
 COMP7506. Smart phone app development
 COMP7507. Visualization and visual analytics
 COMP7604. Game design and development
 COMP7605. Advanced multimedia data analysis and applications
 COMP7807. Topic in multimedia computing

D. Other discipline courses
 COMP7104. Advanced database systems
 COMP7105. Advanced topics in data science
 COMP7106. Big data management
 COMP7201. Analysis and design of enterprise applications in UML
 COMP7203. Modern software design
 COMP7205. Enterprise architecture
 COMP7303. High-performance computing
 COMP7304. The wireless Internet and mobile network
 COMP7305. Cluster and cloud computing
Candidate may select no more than 2 courses offered by other taught postgraduate curricula in the Faculty of Engineering as electives. All course selection will be subject to approval by the Programme Director and Course coordinators concerned.

MSc(CompSc) Course descriptions

The following is a list of discipline courses offered by the Department of Computer Science for the MSc(CompSc) curriculum. The list below is not final and some courses may not be offered every year.

All courses are assessed through examination and / or coursework assessment, the weightings of which are subject to approval by the Board of Examiners.

COMP7103. Data mining (6 credits)

Data mining is the automatic discovery of statistically interesting and potentially useful patterns from large amounts of data. The goal of the course is to study the main methods used today for data mining and on-line analytical processing. Topics include Data Mining Architecture; Data Preprocessing; Mining Association Rules; Classification; Clustering; On-Line Analytical Processing (OLAP); Data Mining Systems and Languages; Advanced Data Mining (Web, Spatial, and Temporal data).

COMP7104. Advanced database systems (6 credits)

The course will study some advanced topics and techniques in database systems, with a focus on the aspects of database systems design & algorithms and big data processing. Traditional topics include: query optimization, physical database design, transaction management, crash recovery, parallel databases. It will survey the recent developments in selected areas such as NoSQL databases and big data management systems.

COMP7105. Advanced topics in data science (6 credits)

This course will introduce selected advanced computational methods and apply them to problems in data analysis and relevant applications.
COMP7106. Big data management (6 credits)

The course will study some advanced topics and techniques in Big Data. It will also survey the recent development and progress in specific areas in big data management and scalable data science. Topics include but not limited to: large database management techniques, spatial data management and spatial networks, data quality and uncertain databases, top-k queries, graph and text databases, and data analytics.

COMP7201. Analysis and design of enterprise applications in UML (6 credits)

This course presents an industrial-strength approach to software development based on object-oriented modelling of business entities. Topics include: overview of software engineering and object-oriented concepts; unified process and Unified Modelling Language (UML); use-case modelling and object modelling; dynamic modelling using sequence diagrams and state machines; object-oriented design; modern web design; introducing design patterns and enterprise applications; shortcomings of UML and remedies. Emphasis will be given on hands-on exercises with the use of CASE tools.

Prerequisites: A course in object-oriented programming and a course in software engineering or systems analysis and design.

COMP7203. Modern software design (6 credits)

The practice of software design has changed markedly in recent years as new approaches to design have gained broad acceptance and several have progressed to become mainstream techniques themselves. This course introduces the principles and practical application of these modern approaches. It first reviews the goals of software design and the qualities that differentiate good designs from bad ones. From this foundation it teaches elemental design patterns, classic design patterns and anti-patterns, refactoring, refactoring to patterns, test-driven design and design for test. Implementation issues, programming idioms and effective use of the language are introduced and discussed where appropriate.

Prerequisites: A course in software engineering or analysis and design of software systems. The course also requires the ability to program in Java and a basic understanding of the UML class and sequence diagrams.

COMP7205. Enterprise architecture (6 credits)

This course aims to teach students the practical skills in modeling and developing enterprise IT architectures. It covers different enterprise architecture frameworks, methodologies and practices (such as TOGAF and Zachman). Students will also learn common enterprise integration patterns for implementation of complex enterprise applications based on Service-Oriented Architecture (SOA). New architecture trends (e.g., cloud computing, shared-nothing architecture, column-based database) will also be introduced.

COMP7301. Computer and network security (6 credits)

The aim of the course is to introduce different methods of protecting information and data in computer and information systems from unauthorized disclosure and modification. Topics include introduction to security; cryptographic algorithms; cryptographic infrastructure; internet security; secure applications and electronic commerce.
Mutually exclusive with: COMP7906 Introduction to cyber security and ICOM6045 Fundamentals of e-commerce security

COMP7303. High-performance computing (6 credits)

This course offers an overview of state-of-the-art parallel architectures and programming languages. The students will learn the issues related to the performance of parallel algorithms, and how to design efficient parallel algorithms for parallel machines. Topics include milestones in the history of HPC and its applications; high-performance computing architectures; performance law; modern CPU design; interconnection network and routing techniques; memory hierarchy and cache coherence protocol; parallel algorithm design; parallel programming models and case studies of supercomputers.

COMP7304. The wireless Internet and mobile network (6 credits)

In the recent few years, many new kinds of wireless network such as mobile ad-hoc network and wireless sensor network are under intensive research by researchers worldwide. These networks enhance the quality of human life as they not only facilitate efficient communications among people, they also let people learn more about their surrounding environments. However, have you ever thought of the potential problems induced by these new kinds of networks?

This course aims at introducing to you various kinds of next generation wireless and mobile networks. We will highlight the scenarios, the characteristics and the technologies behind each kind of network. Then based on their design, we will discuss the potential issues that can appear or even be caused by them. Next we will demonstrate how these issues can be resolved by computer science methodologies.

COMP7305. Cluster and cloud computing (6 credits)

This course offers an overview of current cloud technologies, and discusses various issues in the design and implementation of cloud systems. Topics include cloud delivery models (SaaS, PaaS, and IaaS) with motivating examples from Google, Amazon, and Microsoft; virtualization techniques implemented in Xen, KVM, VMWare, and Docker; distributed file systems, such as Hadoop file system; MapReduce and Spark programming models for large-scale data analysis, networking techniques in cluster and hyper-scale data centers. The students will learn the use of Amazon EC2 to deploy applications on cloud, and implement a SPARK application on a Xen-enabled PC cluster as part of their term project.

Prerequisites: The students are expected to install various open-source cloud software in their Linux cluster, and exercise the system configuration and administration. Basic understanding of Linux operating system and some programming experiences (C/C++, Java, or Python) in a Linux environment are required.

COMP7306. Web technologies (6 credits)

This course aims to give students a basic understanding of various Web technologies and their industry applications. Fundamental XML concepts and techniques, such as XML Schema, XSLT, SAX, and DOM, will be introduced. New technologies related to Web 2.0, web services, service oriented architecture (SOA), and cloud computing will be studied, including RSS, ATOM, Ajax, SOAP, WSDL, ebXML.

Prerequisites: basic web programming knowledge, e.g. HTML, JavaScript, and Java.
COMP7307. Advanced real-time embedded systems and applications (6 credits)

This course’s objective is to introduce advanced real-time scheduling techniques, design and implementation considerations for Embedded Systems. It covers topics on real-time scheduling algorithms, microcontroller architecture, Digital Signal Processors (DSP) architecture, System-on-Chips (SoC), real-time operating systems, and case studies on real-time applications.

Prerequisites: Students should have basic knowledge about operating systems.

COMP7308. Introduction to unmanned systems (6 credits)

To study the theory and algorithms in unmanned systems. Topics include vehicle modelling, vehicle control, state estimation, perception and mapping, motion planning, and deep learning related techniques.

COMP7309. Quantum computing and artificial intelligence (6 credits)

This course offers an introduction to the interdisciplinary fields of quantum computation and quantum AI. The focus will lie on an accessible introduction to the elementary concepts of quantum mechanics, followed by a comparison between computer science and information science in the quantum domain. The theoretical capability of quantum computers will be illustrated by analyzing fundamental algorithms of quantum computation and their potential applications in AI.

COMP7403. Computational molecular biology (6 credits)

To introduce computational methods and data structures for analyzing biological data (e.g. DNA, RNA and protein sequences). Typical topics include basics of molecular biology; biological sequence analysis; indexing data structures; RNA secondary structure alignment/prediction and phylogeny.

COMP7404. Computational intelligence and machine learning (6 credits)

This course will teach a broad set of principles and tools that will provide the mathematical, algorithmic and philosophical framework for tackling problems using Artificial Intelligence (AI) and Machine Learning (ML). AI and ML are highly interdisciplinary fields with impact in different applications, such as, biology, robotics, language, economics, and computer science. AI is the science and engineering of making intelligent machines, especially intelligent computer programs, while ML refers to the changes in systems that perform tasks associated with AI. Ethical issues in advanced AI and how to prevent learning algorithms from acquiring morally undesirable biases will be covered.

Topics may include a subset of the following: problem solving by search, heuristic (informed) search, constraint satisfaction, games, knowledge-based agents, supervised learning, unsupervised learning; learning theory, reinforcement learning and adaptive control and ethical challenges of AI and ML.

Pre-requisites: Nil, but knowledge of data structures and algorithms, probability, linear algebra, and programming would be an advantage.

COMP7405. Techniques in computational finance (6 credits)

This course introduces the major computation problems in the field of financial derivatives and various computational methods/techniques for solving these problems. The lectures start with a short introduction on various financial derivative products, and then move to the derivation of the
mathematical models employed in the valuation of these products, and finally come to the solving techniques for the models.

Pre-requisites: No prior finance knowledge is required. Students are assumed to have basic competence in calculus and probability (up to the level of knowing the concepts of random variables, normal distributions, etc.). Knowledge in at least one programming language is required for the assignments/final project.

Mutually exclusive with: FITE7405 Techniques in computational finance

COMP7406. Software development for quantitative finance (6 credits)

This course introduces the tools and technologies widely used in industry for building applications for Quantitative Finance. From analysis and design to development and implementation, this course covers: modeling financial data and designing financial application using UML, a de facto industry standard for object oriented design and development; applying design patterns in financial application; basic skills on translating financial mathematics into spreadsheets using Microsoft Excel and VBA; developing Excel C++ add-ins for financial computation.

Pre-requisites: This course assumes basic understanding of financial concepts covered in COMP7802. Experience in C++/C programming is required.

Mutually exclusive with: FITE7406 Software development for quantitative finance

COMP7407. Securities transaction banking (6 credits)

The course introduces the business and technology scenarios in the field of Transaction Banking for financial markets. It balances the economic and financial considerations for products and markets with the organizational and technological requirements to successfully implement a banking function in this scenario. It is a crossover between studies of economics, finance and information technology, and features the concepts from basics of the underlying financial products to the latest technology of tokenization of assets on a Blockchain.

Mutually exclusive with: FITE7407 Securities transaction banking

COMP7408. Distributed ledger and blockchain technology (6 credits)

In this course, students will learn the key technical elements behind the blockchain (or in general, the distributed ledger) technology and some advanced features, such as smart contracts, of the technology. Variations, such as permissioned versus permissionless and private blockchains, and the available blockchain platforms will be discussed.

Students will also learn the following issues: the security, efficiency, and the scalability of the technology. Cyber-currency (e.g. Bitcoin) and other typical application examples in areas such as finance will also be introduced.

Prerequisites: COMP7301 Computer and network security or COMP7906 Introduction to cyber security or ICOM6045 Fundamentals of e-commerce security and experience in programming is required.

Mutually exclusive with: FITE3011 Distributed Ledger and Blockchain
COMP7409. Machine Learning in Trading and Finance (6 credits)

The course introduces our students to the field of Machine Learning, and help them develop skills of applying Machine Learning, or more precisely, applying supervised learning, unsupervised learning and reinforcement learning to solve problems in Trading and Finance. This course will cover the following topics. (1) Overview of Machine Learning and Artificial Intelligence, (2) Supervised Learning, Unsupervised Learning and Reinforcement Learning, (3) Major algorithms for Supervised Learning and Unsupervised Learning with applications to Trading and Finance, (4) Basic algorithms for Reinforcement Learning with applications to optimal trading, asset management, and portfolio optimization, (5) Advanced methods of Reinforcement Learning with applications to high-frequency trading, cryptocurrency trading and peer-to-peer lending.

COMP7502. Image processing and computer vision (6 credits)

To study the theory and algorithms in image processing and computer vision. Topics include image representation; image enhancement; image restoration; mathematical morphology; image compression; scene understanding and motion analysis.

COMP7503. Multimedia technologies (6 credits)

This course presents fundamental concepts and emerging technologies for multimedia computing. Students are expected to learn how to develop various kinds of media communication, presentation, and manipulation techniques. At the end of course, students should acquire proper skill set to utilize, integrate and synchronize different information and data from media sources for building specific multimedia applications. Topics include media data acquisition methods and techniques; nature of perceptually encoded information; processing and manipulation of media data; multimedia content organization and analysis; trending technologies for future multimedia computing.

COMP7504. Pattern recognition and applications (6 credits)

To study techniques in pattern recognition. Topics include statistical decision theory; density estimation; dimension reduction; discriminant functions; unsupervised classification and clustering; neural network; hidden Markov model; and selected applications in pattern recognition such as characters and speech recognition.

COMP7505. User interface design and development (6 credits)

For technology products and services, the user experience is a major key to success. With advanced development of processors, sensors, and new algorithms and software tools, more powerful and expressive user interfaces can be implemented to improve human computer interaction and operation. The course will study matching input and output devices with user capabilities, software and hardware considerations, interface design methodologies, and future interface technologies. All of these topics will be supported and demonstrated with current research and actual case studies.

COMP7506. Smart phone apps development (6 credits)

Smart phones have become very popular in recent years. The number of smart phone users worldwide today surpasses three billion and is forecast to further grow by several hundred million in the next few years. Smart phones play an important role in mobile communication and applications.
Smart phones are powerful as they support a wide range of applications (called apps). Most of the time, smart phone users just purchase their favorite apps wirelessly from the vendors. There is a great potential for software developer to reach worldwide users.

This course aims at introducing the design issues of smart phone apps. For example, the smart phone screen is usually much smaller than the computer monitor. We have to pay special attention to this aspect in order to develop attractive and successful apps. Various modern smart phone apps development environments and programming techniques (such as Java for Android phones and Swift for iPhones) will also be introduced to facilitate students to develop their own apps.

Students should have basic programming knowledge.

COMP7507. Visualization and visual analytics (6 credits)

This course introduces the basic principles and techniques in visualization and visual analytics, and their applications. Topics include human visual perception; color; visualization techniques for spatial, geospatial and multivariate data, graphs and networks; text and document visualization; scientific visualization; interaction and visual analysis.

COMP7604. Game design and development (6 credits)

The course studies the basic concepts and techniques for digital game design and development. Topics include: game history and genres, game design process, game production, 2D/3D graphics, physics, audio/visual design, artificial intelligence.

Prerequisites: Basic programming skill, e.g. C++ or Java, is required

COMP7605. Advanced multimedia data analysis and applications (6 credits)

This course's objective is to introduce advanced multimedia data analysis techniques, and the design and implementation of signal processing algorithms. It covers topics on Digital Filter Realization, Recursive and Non-Recursive filters, Frequency Domain Processing, Two Dimensional Signal Processing, and application of multimedia signal processing to speech production and analysis, image and video processing.

COMP7606. Deep learning (6 credits)

Machine learning is a fast-growing field in computer science and deep learning is the cutting edge technology that enables machines to learn from large-scale and complex datasets. Ethical implications of deep learning and its applications will be covered and the course will focus on how deep neural networks are applied to solve a wide range of problems in areas such as natural language processing, and image processing. Other applications such as financial predictions, game playing and robotics may also be covered. Topics covered include linear and logistic regression, artificial neural networks and how to train them, recurrent neural networks, convolutional neural networks, generative models, deep reinforcement learning, and unsupervised feature learning.

Prerequisites: Basic programming skills, e.g., Python is required.

Mutually exclusive with: DASC7606 Deep learning
COMP7704. Dissertation (24 credits)
Candidate will be required to carry out independent work on a major project that will culminate in the writing of a dissertation.

COMP7801. Topic in computer science (6 credits)
Selected topics that are of current interest will be discussed.

COMP7802. Introduction to financial computing (6 credits)
This course introduces the students to different aspects of financial computing in the investment banking area. The topics include yield curve construction in practice, financial modelling and modern risk management practice, etc. Financial engineering is an area of growing demand. The course is a combination of financial product knowledge, financial mathematics and computational techniques. This course will be suitable for students who want to pursue a career in this fast growing area.

Prerequisites: This course does not require any prior knowledge in the area of finance. Basic calculus and numeric computational techniques are useful. Knowledge in Excel spreadsheet operations is required to complete the assignments and final project.

COMP7804. E-commerce security cases and technologies (6 credits)
This course provides students knowledge about modern e-commerce security, through the study of various cases. It covers fundamental concepts in security technology so as to equip the students with enough background knowledge in security, and then covers the impact of the modern e-commerce environment to the changing demand of security. After that a bundle of cases will be covered, such as cases in communication security, cases in Internet security, cases in data security including personal data protection in both client-side and server-side, and application security cases. With the experience of studying these cases, the students will be asked to assess or design security solutions to some given e-commerce security problems, so as to acquire the ability to apply the learnt security technology to real-life cases.

Mutually exclusive with: COMP7905 Reverse engineering and malware analysis

COMP7805. Topic in computer network and systems (6 credits)
Selected topics in computer network and systems that are of current interest will be discussed.

COMP7806. Topic in information security (6 credits)
Selected topics in information security that are of current interest will be discussed.

COMP7807. Topic in multimedia computing (6 credits)
Selected topics in multimedia computing that are of current interest will be discussed.
COMP7808. Topic in financial computing (6 credits)

Selected topics in financial computing that are of current interest will be discussed.

COMP7809. Topic in artificial intelligence (6 credits)

Selected topics in artificial intelligence that are of current interest will be discussed.

COMP7901. Legal protection of digital property (6 credits)

This course introduces computer professionals to the various legal means of protecting digital property including computer software, algorithms, and any work or innovation in digital form. Focus is on the main issues in protecting digital property arising from developments in information technology, and their legal solutions. Topics covered include, but are not limited to, the following: 1) Copyright protection of software and websites, 2) Patent protection of software and algorithms, 3) Protection of personal data.

Mutually exclusive with: ECOM6004 Legal aspects of IT and e-commerce

COMP7903. Digital investigation and forensics (6 credits)

This course introduces the fundamental principles of digital investigation and forensics. The course starts with a brief introduction to common computer crimes and digital evidence, and then moves on to the computer basics and network basics pertaining to digital forensics, and finally comes to the techniques for digital investigation and forensic examination.

COMP7904. Information security: attacks and defense (6 credits)

This is an ethical hacking course. In this course, we will teach students how to conduct ethical hacking so as to better protect a computer system in a company. Topics include physical security, password cracking, network hacking, operating system hacking, and application hacking. The course will also discuss R&D problems related to hacking and defence. The course will try to strike a balance between theory and practice so that students can understand the theories behind the hacking process as well as get enough hands-on exercises to perform ethical hacking and defense.

Prerequisites: Students are expected to have knowledge in university level mathematics and systems plus experience in programming.

COMP7905. Reverse engineering and malware analysis (6 credits)

This course provides students a foundational knowledge about reverse engineering and malware analysis, through the study of various cases and hand-on analysis of malware samples. It covers fundamental concepts in malware investigations so as to equip the students with enough background knowledge in handling malicious software attacks. Various malware incidents will be covered, such as cases in Ransomware, banking-trojan, state-sponsored and APT attacks, cases in Stuxnet and malicious software attacks on Industrial Control System and IoT devices. With the experience of studying these cases and analyzing selected samples, the students will be able to understand the global cyber security landscape and its future impact. Hands-on exercises and in-depth discussion will be provided to enable students to acquire the required knowledge and skill set for defending and protecting an enterprise network environment.
Students should have programming/development skills (Assembly, C, C++, Python) and knowledge in Operating System and computer network.

Mutually exclusive with: COMP7804 E-commerce security cases and technologies.

COMP7906. Introduction to cyber security (6 credits)

The aim of the course is to introduce different methods of protecting information and data in the cyber world, including the privacy issue. Topics include introduction to security; cyber attacks and threats; cryptographic algorithms and applications; network security and infrastructure.

Mutually exclusive with: COMP7301 Computer and network security and ICOM6045 Fundamentals of e-commerce security

DASC7606. Deep learning (6 credits)

Machine learning is a fast-growing field in computer science and deep learning is the cutting edge technology that enables machines to learn from large-scale and complex datasets. Ethical implications of deep learning and its applications will be covered and the course will focus on how deep neural networks are applied to solve a wide range of problems in areas such as natural language processing, and image processing. Other applications such as financial predictions, game playing and robotics may also be covered. Topics covered include linear and logistic regression, artificial neural networks and how to train them, recurrent neural networks, convolutional neural networks, generative models, deep reinforcement learning, and unsupervised feature learning.

Prerequisites: Basic programming skills, e.g., Python is required.

Mutually exclusive with: COMP7606 Deep learning

FITE7405. Techniques in computational finance (6 credits)

This course introduces the major computation problems in the field of financial derivatives and various computational methods/techniques for solving these problems. The lectures start with a short introduction on various financial derivative products, and then move to the derivation of the mathematical models employed in the valuation of these products, and finally come to the solving techniques for the models.

Pre-requisites: No prior finance knowledge is required. Students are assumed to have basic competence in calculus and probability (up to the level of knowing the concepts of random variables, normal distributions, etc.). Knowledge in at least one programming language is required for the assignments/final project.

Mutually exclusive with: COMP7405 Techniques in computational finance

FITE7406. Software development for quantitative finance (6 credits)

This course introduces the tools and technologies widely used in industry for building applications for Quantitative Finance. From analysis and design to development and implementation, this course covers: modeling financial data and designing financial application using UML, a de facto industry standard for object oriented design and development; applying design patterns in financial application; basic
skills on translating financial mathematics into spreadsheets using Microsoft Excel and VBA; developing Excel C++ add-ins for financial computation.

Pre-requisites: This course assumes basic understanding of financial concepts covered in COMP7802. Experience in C++/C programming is required.

Mutually exclusive with: COMP7406 Software development for quantitative finance

FITE7407. Securities transaction banking (6 credits)

The course introduces the business and technology scenarios in the field of Transaction Banking for financial markets. It balances the economic and financial considerations for products and markets with the organizational and technological requirements to successfully implement a banking function in this scenario. It is a crossover between studies of economics, finance and information technology, and features the concepts from basics of the underlying financial products to the latest technology of tokenization of assets on a Blockchain.

Mutually exclusive with: COMP7407 Securities transaction banking

FITE7410. Financial fraud analytics (6 credits)

This course aims at introducing various analytics techniques to fight against financial fraud. These analytics techniques include, descriptive analytics, predictive analytics, and social network learning. Various data set will also be introduced, including labeled or unlabeled data sets, and social network data set. Students learn the fraud patterns through applying the analytics techniques in financial frauds, such as, insurance fraud, credit card fraud, etc.

Key topics include: Handling of raw data sets for fraud detection; Applications of descriptive analytics, predictive analytics and social network analytics to construct fraud detection models; Financial Fraud Analytics challenges and issues when applied in business context.

Required to have basic knowledge about statistics concepts.