The syllabus applies to students admitted in the academic year 2014-15 under the four-year curriculum.

Definition and Terminology

Each course offered by the Department of Industrial and Manufacturing Systems Engineering shall be classified as either introductory level course or advanced level course.

A Discipline Core course is a compulsory course which a candidate must pass in the manner provided for in the Regulations.

A Discipline Elective course refers to any technical course offered by the Department of Industrial and Manufacturing Systems Engineering for the fulfillment of the curriculum requirements of the degree of BEng in Industrial Engineering and Technology Management that are not classified as discipline core course.

Curriculum

The Curriculum comprises 240 credits of courses as follows:

General Engineering Courses
Students are required to complete at least 36 credits of General Engineering Course.

Discipline Core Courses
Students are required to complete ALL discipline core courses (84 credits), comprising 30 credits of introductory core courses and 54 credits of advanced core courses.

Discipline Elective Courses
Students are required to complete at least 36 credits of discipline elective courses offered by the Department of Industrial and Manufacturing Systems Engineering.

Elective Courses
Students are required to complete 12 credits of elective courses offered by either the Department of Industrial and Manufacturing Systems Engineering, or other departments within or outside of the Faculty of Engineering.

University Requirements
Students are required to complete:

a) 12 credits in English language enhancement, including 6 credits in “CAES1000 Core University English” and 6 credits in “CAES9520 Technical English for Industrial and Manufacturing Systems Engineering”;
b) 6 credits in Chinese language enhancement course “CENG9001 Practical Chinese for Engineering Students”; and
c) 36 credits of courses in the Common Core Curriculum, selecting not more than one course from each Area of Inquiry within one academic year and at least one but no more than two courses from each Area of Inquiry during the whole period of study.

Capstone Experience
Students are required to complete the 12-credit “IMSE4114 Project” to fulfill the capstone experience requirement for the degree of BEng in Industrial Engineering and Technology Management.
Internship

Students are required to complete the 6-credit internship “IMSE3129 Internship”, which normally takes place after their third year of study.

Degree Classification

The degree of Bachelor of Engineering shall be awarded in five divisions in accordance with EN16 of the Regulations for the Degree of Bachelor of Engineering and UG9 of the Regulations for the First Degree Curricula.

The details of the distribution of the above course categories are as follows:

The curriculum of BEng (Industrial Engineering and Technology Management) comprises 240 credits of courses with the following structure:

UG 5 Requirements (54 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAES1000</td>
<td>Core University English</td>
<td>6</td>
</tr>
<tr>
<td>CAES9520</td>
<td>Technical English for Industrial and Manufacturing Systems Engineering</td>
<td>6</td>
</tr>
<tr>
<td>CENG9001</td>
<td>Practical Chinese for Engineering Students</td>
<td>6</td>
</tr>
<tr>
<td>CC##XXXXX</td>
<td>University Common Core Course (6 courses)*</td>
<td>36</td>
</tr>
<tr>
<td>Total for UG5 Requirements</td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>

* Students can select not more than one course from each Area of Inquiry within one academic year and at least one but no more than two courses from each Area of Inquiry during the whole period of study.

General Engineering Courses (36 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1851</td>
<td>Calculus and Ordinary Differential Equations</td>
<td>6</td>
</tr>
<tr>
<td>MATH1853</td>
<td>Linear Algebra, Probability & Statistics</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1111/</td>
<td>Computer Programming and Applications/</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1112</td>
<td>Computer Programming and Applications I</td>
<td></td>
</tr>
<tr>
<td>PHYS1050</td>
<td>Physics for engineering students</td>
<td>6</td>
</tr>
<tr>
<td>ENGG120#</td>
<td>Any two of the General Engineering Courses offered by the Dept. of IMSE or other Departments of the Faculty of Engineering*</td>
<td>12</td>
</tr>
<tr>
<td>Total for General Engineering Courses</td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

*Choose two General Engineering Courses from the following list:

- ENGG1201 Engineering for sustainable development
- ENGG1202 Foundation of computer science
- ENGG1203 Introduction to electrical and electronic engineering
- ENGG1204 Industrial management and logistics
- ENGG1205 Introduction to mechanical engineering
- ENGG1206 Introduction to biomedical engineering
- ENGG1207 Foundations of biochemistry for medical engineering

Discipline Core Courses (84 credits)
Introductory Courses (30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE2103</td>
<td>Introduction to business and management</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2109</td>
<td>Fundamentals of engineering design</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2121</td>
<td>Engineering training</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2133</td>
<td>Operational research techniques I</td>
<td>6</td>
</tr>
<tr>
<td>MECH2407</td>
<td>Multivariable calculus and partial differential equations</td>
<td>6</td>
</tr>
</tbody>
</table>

Total for Introductory Discipline Core Courses 30

Advanced Courses (54 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE3105</td>
<td>Managerial accounting and finance</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3106</td>
<td>Manufacturing technology</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3109</td>
<td>Quality management</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3125</td>
<td>Integrative studies (IE Practice)</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3126</td>
<td>Engineers in society</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3133</td>
<td>Operational research techniques II</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4101</td>
<td>Computer integrated manufacturing</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4115</td>
<td>Industrial systems integration</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4116</td>
<td>Operational planning and control</td>
<td>6</td>
</tr>
</tbody>
</table>

Total for Advanced Discipline Core Courses 54

Capstone Experience and Internship (18 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE4114</td>
<td>Project+</td>
<td>12</td>
</tr>
<tr>
<td>IMSE3129</td>
<td>Internship*</td>
<td>6</td>
</tr>
</tbody>
</table>

Total for Capstone Experience and Internship 18

+Capstone Experience

*Training

Discipline Elective Courses (36 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE2112</td>
<td>Engineering technology</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2113</td>
<td>Information systems</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2114</td>
<td>Product development</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2116</td>
<td>Fundamentals of business logistics</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2117</td>
<td>Engineering systems analysis</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3101</td>
<td>Supply chain design and development</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3103</td>
<td>Systems automation</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3107</td>
<td>Systems modeling and simulation</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3116</td>
<td>Internet technology for e-commerce</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3118</td>
<td>Industrial organisation and management</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3119</td>
<td>Stochastic decision systems</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3127</td>
<td>Facilities planning and design</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3128</td>
<td>Human factors engineering</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4102</td>
<td>Engineering project management</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4110</td>
<td>Financial engineering</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4118</td>
<td>Advanced manufacturing technology</td>
<td>6</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>No. of credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>IMSE4119</td>
<td>Digital enterprises and e-commerce</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4120</td>
<td>Technology marketing</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4121</td>
<td>Strategic management of business and technology</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4128</td>
<td>Innovation and entrepreneurship</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4129</td>
<td>Manufacturing system analysis and design</td>
<td>6</td>
</tr>
<tr>
<td>Complete six discipline elective courses for a total of 36 credits</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Note: Course availability and electives are subject to change.

Elective Courses (12 credits)

At least 12 credits of courses offered by either the Department of Industrial and Manufacturing Systems Engineering, or other departments within or outside of the Faculty of Engineering.

Summary of curriculum structure of BEng (Industrial Engineering and Technology Management)

<table>
<thead>
<tr>
<th>Course Categories</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>UG5 Requirements</td>
<td>54</td>
</tr>
<tr>
<td>General Engineering Courses</td>
<td>36</td>
</tr>
<tr>
<td>Discipline Core Courses (Introductory)</td>
<td>30</td>
</tr>
<tr>
<td>Discipline Core Courses (Advanced)</td>
<td>54</td>
</tr>
<tr>
<td>Capstone Experience and Internship</td>
<td>18</td>
</tr>
<tr>
<td>Discipline Elective Courses</td>
<td>36</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
</tr>
</tbody>
</table>

The proposed syllabus by study year is as follows:

FIRST YEAR

General Engineering Courses (36 credits)

MATH1851 Calculus and Ordinary Differential Equations
MATH1853 Linear Algebra, Probability & Statistics
ENGG1111/ Computer Programming and Applications/
ENGG1112 Computer Programming and Applications I
PHYS1050 Physics for engineering students
ENGG120X Any two of the General Engineering Courses offered by IMSE or other Departments of the Faculty of Engineering

University Requirements (UG5) (24 credits)

CAES1000 Core University English
CC##XXXX Three Common Core Courses

SECOND YEAR

Introductory Core Courses (30 credits)

IMSE2103 Introduction to business and management
IMSE2109 Fundamentals of engineering design
IMSE2121 Engineering training
IMSE2133 Operational research techniques I
MECH2407 Multivariable calculus and partial differential equations
Discipline Elective Courses (6 credits)

University Requirements (UG5) (24 credits)
CC##XXXX Three Common Core Courses
CAES9520 Technical English for Industrial and Manufacturing Systems Engineering

THIRD YEAR

Advanced Core Courses (36 credits)
IMSE3105 Managerial accounting and finance
IMSE3106 Manufacturing technology
IMSE3109 Quality management
IMSE3125 Integrative studies (IE Practice)
IMSE3126 Engineers in society
IMSE3133 Operational research techniques II

Internship (6 credits)
IMSE3129 Internship

University Requirements (UG5) (6 credits)
CENG9001 Practical Chinese for Engineering Students

Discipline Elective Courses (12 credits)

FOURTH YEAR

Advanced Core Courses (18 credits)
IMSE4101 Computer integrated manufacturing
IMSE4115 Industrial systems integration
IMSE4116 Operational planning and control

Discipline Elective Courses (18 credits)

Capstone Experience (12 credits)
IMSE4114 Project

Elective Courses (12 credits)
LOGISTICS ENGINEERING AND SUPPLY CHAIN MANAGEMENT

SYLLABUS

The syllabus applies to students admitted in the academic year 2014-15 under the four-year curriculum.

Definition and Terminology

Each course offered by the Department of Industrial and Manufacturing Systems Engineering shall be classified as either introductory level course or advanced level course.

A Discipline Core course is a compulsory course which a candidate must pass in the manner provided for in the Regulations.

A Discipline Elective course refers to any technical course offered by the Department of Industrial and Manufacturing Systems Engineering for the fulfillment of the curriculum requirements of the degree of BEng in Logistics Engineering and Supply Chain Management that are not classified as discipline core course.

Curriculum

The Curriculum comprises 240 credits of courses as follows:

General Engineering Courses
Students are required to complete at least 36 credits of General Engineering Course.

Discipline Core Courses
Students are required to complete ALL discipline core courses (84 credits), comprising 36 credits of introductory core courses and 48 credits of advanced core courses.

Discipline Elective Courses
Students are required to complete at least 36 credits of discipline elective courses offered by the Department of Industrial and Manufacturing Systems Engineering.

Elective Courses
Students are required to complete 12 credits of elective courses offered by either the Department of Industrial and Manufacturing Systems Engineering, or other departments within or outside of the Faculty of Engineering.

University Requirements
Students are required to complete:

a) 12 credits in English language enhancement, including 6 credits in “CAES1000 Core University English” and 6 credits in “CAES9520 Technical English for Industrial and Manufacturing Systems Engineering”;

b) 6 credits in Chinese language enhancement course “CENG9001 Practical Chinese for Engineering Students”; and

c) 36 credits of courses in the Common Core Curriculum, selecting not more than one course from each Area of Inquiry within one academic year and at least one but no more than two courses from each Area of Inquiry during the whole period of study.

Capstone Experience
Students are required to complete the 12-credit “IMSE4124 Project” to fulfill the capstone experience requirement for the degree of BEng in Logistics Engineering and Supply Chain Management.
Internship
Students are required to complete the 6-credit internship “IMSE3129 Internship”, which normally takes place after their third year of study.

Degree Classification
The degree of Bachelor of Engineering shall be awarded in five divisions in accordance with EN16 of the Regulations for the Degree of Bachelor of Engineering and UG9 of the Regulations for the First Degree Curricula.

The details of the distribution of the above course categories are as follows:

The curriculum of BEng (Logistics Engineering and Supply Chain Management) comprises 240 credits of courses with the following structure:

UG 5 Requirements (54 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAES1000</td>
<td>Core University English</td>
<td>6</td>
</tr>
<tr>
<td>CAES9520</td>
<td>Technical English for Industrial and Manufacturing Systems Engineering</td>
<td>6</td>
</tr>
<tr>
<td>CENG9001</td>
<td>Practical Chinese for Engineering Students</td>
<td>6</td>
</tr>
<tr>
<td>CC##XXXX</td>
<td>University Common Core Course (6 courses)*</td>
<td>36</td>
</tr>
<tr>
<td>Total for UG5 Requirements</td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>

* Students can select not more than one course from each Area of Inquiry within one academic year and at least one but no more than two courses from each Area of Inquiry during the whole period of study.

General Engineering Courses (36 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1851</td>
<td>Calculus and Ordinary Differential Equations</td>
<td>6</td>
</tr>
<tr>
<td>MATH1853</td>
<td>Linear Algebra, Probability & Statistics</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1111/</td>
<td>Computer Programming and Applications/</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1112</td>
<td>Computer Programming and Applications I</td>
<td></td>
</tr>
<tr>
<td>PHYS1050</td>
<td>Physics for engineering students</td>
<td>6</td>
</tr>
<tr>
<td>ENGG120#</td>
<td>Any two of the General Engineering Courses offered by the Dept. of IMSE or other Departments of the Faculty of Engineering*</td>
<td>12</td>
</tr>
<tr>
<td>Total for General Engineering Courses</td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

*Choose two General Engineering Courses from the following list:

- ENGG1201 Engineering for sustainable development
- ENGG1202 Foundation of computer science
- ENGG1203 Introduction to electrical and electronic engineering
- ENGG1204 Industrial management and logistics
- ENGG1205 Introduction to mechanical engineering
- ENGG1206 Introduction to biomedical engineering
- ENGG1207 Foundations of biochemistry for medical engineering

Discipline Core Courses (84 credits)
Introductory Courses (36 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE2103</td>
<td>Introduction to business and management</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2109</td>
<td>Fundamentals of engineering design</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2116</td>
<td>Fundamentals of business logistics</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2121</td>
<td>Engineering training</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2133</td>
<td>Operational research techniques I</td>
<td>6</td>
</tr>
<tr>
<td>MECH2407</td>
<td>Multivariable calculus and partial differential equations</td>
<td>6</td>
</tr>
<tr>
<td>Total for Introductory Discipline Core Courses</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Advanced Courses (48 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE3101</td>
<td>Supply chain design and development</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3121</td>
<td>Transportation and distribution planning</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3126</td>
<td>Engineers in society</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3133</td>
<td>Operational research techniques II</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3135</td>
<td>Integrative studies (LSC Practice)</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4116</td>
<td>Operational planning and control</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4122</td>
<td>Global logistics systems</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4125</td>
<td>Logistics systems integration</td>
<td>6</td>
</tr>
<tr>
<td>Total for Advanced Discipline Core Courses</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

Capstone Experience and Internship (18 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE4124</td>
<td>Project +</td>
<td>12</td>
</tr>
<tr>
<td>IMSE3129</td>
<td>Internship*</td>
<td>6</td>
</tr>
<tr>
<td>Total for Capstone Experience and Internship</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

+Capstone Experience
*Training

Discipline Elective Courses (36 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE2112</td>
<td>Engineering technology</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2113</td>
<td>Information systems</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2114</td>
<td>Product development</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2117</td>
<td>Engineering systems analysis</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3103</td>
<td>Systems automation</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3105</td>
<td>Managerial accounting and finance</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3107</td>
<td>Systems modeling and simulation</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3109</td>
<td>Quality management</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3116</td>
<td>Internet technology for e-commerce</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3118</td>
<td>Industrial organisation and management</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3119</td>
<td>Stochastic decision systems</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3120</td>
<td>Purchasing and supply management</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3127</td>
<td>Facilities planning and design</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3128</td>
<td>Human factors engineering</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4101</td>
<td>Computer integrated manufacturing</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4102</td>
<td>Engineering project management</td>
<td>6</td>
</tr>
</tbody>
</table>
IMSE4110 | Financial engineering | 6
IMSE4119 | Digital enterprises and e-commerce | 6
IMSE4120 | Technology marketing | 6
IMSE4121 | Strategic management of business and technology | 6
IMSE4123 | Warehousing and terminal operations | 6
IMSE4128 | Innovation and entrepreneurship | 6

Complete six discipline elective courses for a total of 36 credits | 36

Note: Course availability and electives are subject to change.

Elective Courses (12 credits)

At least 12 credits of courses offered by either the Department of Industrial and Manufacturing Systems Engineering, or other departments within or outside of the Faculty of Engineering.

Summary of curriculum structure of BEng (Logistics Engineering and Supply Chain Management)

<table>
<thead>
<tr>
<th>Course Categories</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>UG5 Requirements</td>
<td>54</td>
</tr>
<tr>
<td>General Engineering Courses</td>
<td>36</td>
</tr>
<tr>
<td>Discipline Core Courses (Introductory)</td>
<td>36</td>
</tr>
<tr>
<td>Discipline Core Courses (Advanced)</td>
<td>48</td>
</tr>
<tr>
<td>Capstone Experience and Internship</td>
<td>18</td>
</tr>
<tr>
<td>Discipline Elective Courses</td>
<td>36</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
</tr>
</tbody>
</table>

The proposed syllabus by study year is as follows:

FIRST YEAR

General Engineering Courses (36 credits)

- MATH1851 | Calculus and Ordinary Differential Equations
- MATH1853 | Linear Algebra, Probability & Statistics
- ENGG1111/ Computer Programming and Applications/
- ENGG1112 | Computer Programming and Applications I
- PHYS1050 | Physics for engineering students
- ENGG120X | Any two of the General Engineering Courses offered by IMSE or other Departments of the Faculty of Engineering

University Requirements (UG5) (24 credits)

- CAES1000 | Core University English
- CC##XXXX Three Common Core Curriculum Courses

SECOND YEAR

Introductory Core Courses (36 credits)

- IMSE2103 | Introduction to business and management
- IMSE2109 | Fundamentals of engineering design
- IMSE2116 | Fundamentals of business logistics
- IMSE2121 | Engineering training
- IMSE2133 | Operational research techniques I
MECH2407 Multivariable calculus and partial differential equations

University Requirements (UG5) (24 credits)
CC##XXXX Three Common Core Courses
CAES9520 Technical English for Industrial and Manufacturing Systems Engineering

THIRD YEAR

Advanced Core Courses (30 credits)
IMSE3101 Supply chain design and development
IMSE3121 Transportation and distribution planning
IMSE3126 Engineers in society
IMSE3133 Operational research techniques II
IMSE3135 Integrative studies (LSC Practice)

Internship (6 credits)
IMSE3129 Internship

University Requirements (UG5) (6 credits)
CENG9001 Practical Chinese for Engineering Students

Discipline Elective Courses (18 credits)

FOURTH YEAR

Advanced Core Courses (18 credits)
IMSE4116 Operational planning and control
IMSE4122 Global logistics systems
IMSE4125 Logistics systems integration

Discipline Elective Courses (18 credits)

Capstone Experience (12 credits)
IMSE4124 Project

Elective Courses (12 credits)

Minor in Industrial Engineering and Technology Management [not eligible for BEng(IETM) and BEng(LESCM) students]

Candidates who are interested in pursuing minor in Industrial Engineering and Technology Management must satisfy the following prerequisites:

- Level 3 or above in Mathematics and
- Level 3 or above in Physics or Combined Science with Physics component in the Hong Kong Diploma in Secondary Education (HKDSE) Examination
Candidates are required to complete a total of 36 credits of courses in the following manner:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE3107</td>
<td>Systems modeling and simulation</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3127</td>
<td>Facilities planning and design</td>
<td>6</td>
</tr>
</tbody>
</table>

(i) 12 credits of core courses

(ii) 24 credits of discipline elective courses selected from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE2114</td>
<td>Product development</td>
<td>6</td>
</tr>
<tr>
<td>IMSE2133</td>
<td>Operational research techniques I</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3105</td>
<td>Management accounting and finance</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3126</td>
<td>Engineers in society</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4101</td>
<td>Computer integrated manufacturing</td>
<td>6</td>
</tr>
</tbody>
</table>

Minor in Logistics Engineering and Supply Chain Management
[not eligible for BEng(IETM) and BEng(LESCM) students]

Candidates who are interested in pursuing minor in Industrial Engineering and Technology Management must satisfy the following prerequisites:

- Level 3 or above in Mathematics and
- Level 3 or above in Physics or Combined Science with Physics component in the Hong Kong Diploma in Secondary Education (HKDSE) Examination

Candidates are required to complete a total of 36 credits of courses in the following manner:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE3101</td>
<td>Supply chain design and development</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3107</td>
<td>Systems modeling and simulation</td>
<td>6</td>
</tr>
</tbody>
</table>

(i) 12 credits of core courses

(ii) 24 credits of discipline elective courses selected from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE2133</td>
<td>Operational research techniques I</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3105</td>
<td>Management accounting and finance</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3121</td>
<td>Transportation and distribution planning</td>
<td>6</td>
</tr>
<tr>
<td>IMSE3126</td>
<td>Engineers in society</td>
<td>6</td>
</tr>
<tr>
<td>IMSE4119</td>
<td>Digital enterprises and e-commerce</td>
<td>6</td>
</tr>
</tbody>
</table>
COURSE DESCRIPTIONS

Candidates will be required to do the coursework in the respective courses selected. Not all courses are offered every semester.

General Engineering Courses

ENGG1111 Computer programming (6 credits) or
ENGG1112 Computer programming I (6 credits)
MATH1851 Calculus and Ordinary Differential Equations (6 credits)
MECH2407 Multivariable calculus and partial differential equations (6 credits)
MATH1853 Linear Algebra, Probability & Statistics (6 credits)
PHYS1050 Physics for engineering students (6 credits)
ENGG1201 Engineering for sustainable development (6 credits)
ENGG1202 Foundation of computer science (6 credits)
ENGG1203 Introduction to electrical and electronic engineering (6 credits)
ENGG1204 Industrial management and logistics (6 credits)
ENGG1205 Introduction to mechanical engineering (6 credits)
ENGG1206 Introduction to biomedical engineering (6 credits)
ENGG1207 Foundations of biochemistry for medical engineering (6 credits)

Please refer to the General Engineering Courses in the syllabus for the degree of BEng for details.

University Requirements on Language Enhancement Courses

CAES1000. Core University English (6 credits)
CENG9001. Practical Chinese for engineering students (6 credits)

Please refer to the University Language Enhancement Courses in the syllabus for the degree of BEng for details.

CAES9520. Technical English for Industrial and Manufacturing Systems Engineering (6 credits)

This 6-credit English-in-the-Discipline course will introduce IMSE students to professional and technical communication in the context of oral presentation and report writing. The course will provide an intensive English environment and engage students in activities which help them prepare for the completion of the assessments required by the discipline course titled “IMSE2103 Introduction to business and management”. Assessment is wholly by coursework.

Co-requisite: IMSE2103 Introduction to Business and Management

Assessment: 100% continuous assessment

University Common Core Curriculum

36 credits of courses in the University Common Core Curriculum, in which students can select not more than one course from each Area of Inquiry within one academic year and at least one but no more than two courses from each Area of Inquiry during the whole period of study:

- Scientific and Technology Literacy
IMSE2103. Introduction to business and management (6 credits)

Business of production; business environment, globalization, the positions of Hong Kong and China; marketing and distribution; the firm and the customer; the firm and its suppliers; finance and the firm; costs of production; human resource management; introduction to manufacturing systems; management and integration; the engineer in society, professional ethics; development of technology and interaction between societies and technology, intellectual property; the environment and safety.

Assessment: 30% continuous assessment, 70% examination

IMSE2109. Fundamentals of engineering design (6 credits)

Visualization of technical information; application of CAD software to prepare product design models and drawings; principles of engineering graphics: orthographic projections, isometric views, auxiliary views, sectioning, dimensioning and tolerancing; assembly modelling and drawing; design of components; general principles of product and tool design.

Assessment: 100% continuous assessment

IMSE2112. Engineering technology (6 credits)

Kinematics and dynamics of rigid bodies, centre of percussion, design for reduction of impact stress; analysis, simulation and applications of 4-bar mechanisms, velocity diagram and instantaneous centre of rotation; Geneva mechanism, gear train and motion transmission; analysis and applications of simple harmonic motion, damping of vibrations; fundamental electrical circuit analysis; alternating current electricity, AC circuits and phasors.

Assessment: 20% continuous assessment, 80% examination

IMSE2113. Information systems (6 credits)

Information systems; the strategic role of information technology; data communications and networking; online databases and their applications; development and implementation of information systems.

Assessment: 60% continuous assessment, 40% examination

IMSE2114. Product development (6 credits)

Organisation and management, performance measurement; market research, product design specification, product safety, product and the environment, concept generation and selection, design review and improvements; product appraisal from functional, ergonomic and aesthetic, manufacturing and economical aspects; design theory and methodology, information / literature search.

Assessment: 40% continuous assessment, 60% examination
IMSE2116. Fundamentals of business logistics (6 credits)

Definition, importance and objectives of business logistics; transport fundamentals and transport decisions; storage and handling systems and decisions; inventory policies; forecasting logistics requirements; facility location analysis; network planning process; purchasing scope and objectives; purchasing structure and organisation; purchasing variables – price, time and quality; buying commodities; buying capital goods; buying services; purchasing systems.

Assessment: 20% continuous assessment, 80% examination

IMSE2117. Engineering systems analysis (6 credits)

Fundamental and elements of engineering system; system analysis and design principles; structured system analysis and design method (SSADM), object-oriented analysis and design (OOAD); applications of SSADM and OOAD for engineering system development.

Assessment: 20% continuous assessment, 80% examination

IMSE2121. Engineering training (6 credits)

Metal work, manufacturing practice, practical networking, computing practice, design practice, plastic processing, metrology, CNC programming and CAD/CAM, electronics, work study.

Assessment: 100% practical work

IMSE2133. Operational research techniques I (6 credits)

Random samples and sampling distributions; parameter estimation and hypothesis testing; analysis of variance; linear and logistic regression; support vector machine; reliability engineering; statistical quality control; design of experiments; application examples in industrial and logistics engineering.

Prerequisite: MATH1851 Calculus and ordinary differential equations or MATH1853 Linear algebra, probability & statistics

Assessment: 10% continuous assessment, 90% examination

IMSE3101. Supply chain design and development (6 credits)

Supply chain overview; operating objectives; barriers to internal integration; supply chain performance cycles; logistics positioning; supply chain environmental assessment; time-based supply chains; information flow; alternative supply chain strategies; supply chain integration theory; logistics location structure; warehouse location patterns; transportation economies; inventory economies; least total cost design; formulating supply chain strategy; planning and design supply chain methodology; supply chain administration and dimensions of change management.

Prerequisite: IMSE2116 Fundamentals of business logistics

Assessment: 20% continuous assessment, 80% examination
IMSE3103. Systems automation (6 credits)

Fundamental of systems automation; basic components of system automation for services and manufacturing industries; electric, pneumatic/hydraulic systems, automation systems design, open-loop and closed-loop control; system performance analysis, analogue and digital control systems; introduction to robotics and the application of robots in industry; artificial intelligence and their roles and applications in system automation.

Prerequisite: MATH1851 Calculus and ordinary differential equations (6 credits)
Assessment: 30% continuous assessment, 70% examination

IMSE3105. Managerial accounting and finance (6 credits)

Cost accounting - procedures; direct costs, absorption costing; marginal costing. Planning and control – activity-based costing systems; standard costing systems; capital expenditure and investment; health, safety and environmental aspects of company activities; contemporary issues in management accounting; financial accounting - accounting rules; basic financial accounts; manufacturing accounts; company account; financial performance – ratio analysis; interpretation of accounting data.

Prerequisite: IMSE2103 Introduction to business and management
Assessment: 30% continuous assessment, 70% examination

IMSE3106. Manufacturing technology (6 credits)

Introduction to manufacturing, safety in manufacturing, manufacturing and the environment; metrology, measuring standards, limits and fits, geometrical tolerances, limit gauging, surface texture; casting processes, pattern and gating, permanent and non-permanent moulds; forming processes, principles of bulk deformation and sheet metal working; joining processes, fastening, liquid and solid states welding, powder metallurgy; machining processes, cutting and grinding operations, non-traditional machining, cutting conditions; plastics materials and processing.

Assessment: 40% continuous assessment and 60% examination

IMSE3107. Systems modeling and simulation (6 credits)

Basic concepts of modelling and simulation; discrete-event simulation techniques; introduction to computer-aided simulation and the use of simulation packages; methodology of simulation study of industrial systems; model development for industrial systems, analysis of systems; model validation and verification; analysis of simulation results, case studies of industrial and manufacturing systems using discrete event simulations.

Assessment: 60% continuous assessment, 40% examination

IMSE3109. Quality management (6 credits)

Total quality management; management tools for quality; benchmarking; quality assurance management systems; ISO9000 series; national quality awards; design of industrial experiments; statistical process control; control charts; acceptance sampling; environmental management; ISO14000 series; environmental management systems; business process reengineering; customer services quality.
Assessment: 30% continuous assessment, 70% examination

IMSE3116. Internet technology for e-commerce (6 credits)

Overview of e-Business and e-Commerce; Electronic Business Solutions (EBS) and technology; roles and applications of e-business solutions; design and development of e-business systems; adoption and implementation: internet programming, web-based system development, online database design and implementation.

Assessment: 60% continuous assessment and 40% examination

IMSE3118. Industrial organisation and management (6 credits)

Managing and managers; evolution of management theory; planning - decision making; strategic management; strategy implementation, strategic management; organising - organisational design and structure; power and the distribution of authority; managing organisational change and innovation; leading – motivation, leadership, teams and teamwork; controlling, principles of effective control, operations control.

Prerequisite: IMSE2103 Introduction to business and management

Assessment: 40% continuous assessment, 60% examination

IMSE3119. Stochastic decision systems (6 credits)

Decision analysis: decision making under uncertainty, axioms of decision analysis, methodology of decision analysis, analytical hierarchy approach, quantification of judgemental uncertainties, assessing utilities, and group decision problems; game theory and gaming: extensive and normal forms, zero-sum two-person games, two-persons nonzero-sum games, n-persons games, teaching and training and operational gaming; stochastic processes: random walks, recurrent events, Markov chains, and renewal-processes.

Prerequisite: MATH1851 Calculus and ordinary differential equations and MATH1853 Linear algebra, probability & statistics

Assessment: 30% continuous assessment, 70% examination

IMSE3120. Purchasing and supply management (6 credits)

Introduction of purchasing function/process; quality management for goods and service; sourcing and market analysis; make-or-buy decisions and subcontracting ; negotiation; controlling price and costs; vendor selection; commodity buying; service buying; capital buying; strategic purchasing; e-procurement and public procurement

Assessment: 40% continuous assessment, 60% examination

IMSE3121. Transportation and distribution planning (6 credits) [for BEng(LESCM)]

The evolution of transportation management; traffic management; transportation alternatives and technologies; transportation infrastructure; transportation performance analysis; total transportation cost analysis; fleet development and management; fleet performance indicators; routing and scheduling;
shipment planning; containerisation-alternatives and selection criteria; mode selection criteria; transportation management and information systems requirements; international transportation strategies; implementation organisational issues.

Prerequisite: IMSE2116 Fundamentals of business logistics
Assessment: 30% continuous assessment, 70% examination

IMSE3125. Integrative studies (IE practice) (6 credits)

To develop students in the areas of technical literature survey, analysis and assimilation of materials, skills of written and oral presentation, composition and implementation of ideas, communication and interactive skills through student and product centred activities, interactive and project-based learning.

The major element of the module is a group project on the product and manufacturing system design of a manufactured product. The group project is to integrate the applications of various topics including: project management; product life-cycle management; manufacturing logistics; cost accounting; scheduling; process planning and workflow; human factors; distribution and marketing.

Assessment: 100% continuous assessment

IMSE3126. Engineers in society (6 credits)

Economic, industrial and social context of engineering; responsibilities of professional engineers, the legal, environmental, economical and ethical roles of engineers in society, judgment and decision process based on non-technical aspects such as financial, environmental and cultural considerations, meeting with professional engineers from the industrial and logistics sectors.

Assessment: 40% continuous assessment, 60% examination

IMSE3127. Facilities planning and design (6 credits)

Plant location problem; advanced techniques in plant layout design, computer-based layout planning, and quantitative approaches; materials handling, storage and warehousing for global manufacturing; lean manufacturing, cellular manufacturing, one-piece flow; workplace design in the information age; digital factory; fire safety and security; study cases drawn from the manufacturing and service industries.

Assessment: 30% continuous assessment, 70% examination

IMSE3128. Human factors engineering (6 credits)

Human-organization interaction; human-machine interface usability and design; workplace safety and health; applied anthropometry and biomechanics; physical work and manual material handling; workplace and environmental design, illumination, noise, thermal; information processing; display and control; skills and learning; job design and shift work.

Assessment: 40% continuous assessment, 60% examination
IMSE3129 Internship (6 credits)

An internship in an appropriate industry six to twelve weeks duration. All Year 3 students must undergo a 6 to 12-week Internship in the summer immediately after the second semester of Level 3 studies ends. Most students undergo Internships in services or manufacturing companies in Hong Kong or China. The content of such on-the-job training may include engineering design and modification, installation, repairing, computation, programming, site inspection, measurement, quality assurance, warehouse management, etc. In some companies, the training programmes are project-orientated and often predetermined. The Internship is an important part of this 4-year BEng programme, as it gives students an opportunity to gain practical experience in industry and to develop their professional skills.

At the end of the training period, all the sponsoring organisations will complete an appraisal form on the trainees’ performance. Students must submit a report after the training, and assessments are based on both the training logbook and performance appraisal.

Assessment: 100% practical work

IMSE3133. Operational research techniques II (6 credits)

Formulation of linear programming; Geometry of linear programming; Simplex method; Sensitivity analysis; Duality theory; Formulation of integer programming; Branch-and-bound; Network flow; Application of queueing models; Poisson process; Birth-and-death process; M/M/1 queue; M/M/k queue

Prerequisite: MATH1851 Calculus and ordinary differential equations or MATH1853 Linear algebra, probability & statistics

Assessment: 30% continuous assessment and 70% examination

IMSE3135. Integrative studies (LSC practice) (6 credits)

To develop students in the areas of technical literature survey, analysis and assimilation of materials, skills of written and oral presentation, composition and implementation of ideas, communication and interactive skills through student and product centred activities, interactive and project-based learning.

The major element of the module is a group project on the design of a logistic system or a logistic-related product or service. The group project is to integrate the applications of various topics including: project management; product life-cycle management; business logistics; cost accounting; scheduling; transportation planning; material handling; workflow design; human factors; distribution and marketing.

Assessment: 100% continuous assessment

IMSE4101. Computer integrated manufacturing (6 credits)

Overview of Computer Integrated Manufacturing (CIM) system and CAD/CAM functions; geometric modelling in CAD - principles of surface and solid modelling; CNC applications in CAM; computer aided process planning, automated process planning; rapid and virtual manufacturing; CAD and CAM integration.

Prerequisite: IMSE2109 Fundamentals of engineering design and IMSE3125 Integrative studies (IE practice) or
IMSE4102. Engineering project management (6 credits)

Fundamentals of engineering project management; project environment; project evaluation; risk management process; project selection and proposal preparation; project scheduling and contingency setting and control; control of variation and claims; project management methodologies and techniques, change management; multi-criteria decision making process; analytic hierarchy process; PERT/GANTT techniques for project control and resources allocation; simulation of critical paths; case studies.

Co-requisite: IMSE2133 Operational research techniques I
Assessment: 30% continuous assessment, 70% examination

IMSE4110. Financial engineering (6 credits)

Financial markets and financial securities, portfolio management and investment strategies; international finance, foreign exchange markets; project evaluation and financing, present value, cost of capital, cost-benefit ratio and internal rates of return; financial instruments, forwards, futures; swaps, options and hedging strategies; foreign trade and investment in China.

Prerequisite: IMSE3105 Managerial accounting and finance
Assessment: 30% continuous assessment, 70% examination

IMSE4114. Project (12 credits)

A dissertation or report on a topic consisting of design, experimental or analytical investigation in the field of industrial engineering and technology management.

Assessment: 100% continuous assessment

IMSE4115. Industrial systems integration (6 credits)

Student-centred learning on system integration and analysis and evaluation of system performance.

The module covers the application of techniques as follows:
Business analysis and decision making process; industrial modelling and simulation; layout planning; project management, strategic management; industry analysis; value chain analysis and critical success factors.

Assessment: 100% continuous assessment

IMSE4116. Operations planning and control (6 credits)

The use of operations planning and control systems in forecasting, scheduling and inventory control; functions and organisation of production and inventory control systems; demand forecasting; deterministic and stochastic inventory control problems; aggregate production planning; master production scheduling; requirements and capacity planning systems; operations scheduling and control
of production systems; Just-In-Time techniques; balancing of assembly lines; information reporting and processing; supply chain management.

Prerequisite: IMSE2133 Operational research techniques I
Assessment: 20% continuous assessment, 80% examination

IMSE4118. Advanced manufacturing technology (6 credits)

Metal cutting and machining, analysis of cutter geometry and materials; mechanics of cutting, tool wear and tool life, cutting optimization, analysis of milling, grinding, EDM, ECM, LBM; analysis of metal forming processes; engineering plasticity, Upper-Bound Theorem, CAD/CAM for mould and dies, rapid prototyping technologies; melt rheology, temperature and pressure effects, viscosity, mixing systems, polymeric materials, analysis of injection, extrusion, mould and die design.

Prerequisite: IMSE3106 Manufacturing technology
Assessment: 20% continuous assessment, 80% examination

IMSE4119. Digital enterprises and e-commerce (6 credits)

Enterprise resource management; EDI applications; data mining and warehousing; virtual enterprises; advanced Internet and web applications in product development, industrial applications of virtual reality; electronic product and component cataloguing; cryptographic systems; capability maturity model; social accountability standard; E-commerce business models; technological, business planning and social issues of E-commerce; order taking and processing; electronic payment systems, smart cards.

Prerequisite: IMSE3116 Internet technology for e-commerce or
IMSE2113 Information systems or
ENGG1111 Computer programming and applications or
ENGG1112 Computer programming and applications I
Assessment: 50% continuous assessment, 50% examination

IMSE4120. Technology marketing (6 credits)

Customer relationships and value, marketing strategies and plans, marketing environment, ethical and social responsibility in marketing, marketing mix, marketing research and forecasting, marketing segmentation and positioning, technology trend, distribution channels, intellectual property, e-marketing.

Prerequisite: IMSE2103 Introduction to business and management
Assessment: 30% continuous assessment, 70% examination

IMSE4121. Strategic management of business and technology (6 credits)

Analysis of the external environment and industry clusters for local industries – threats and opportunities from government policies as well as the legal, economic, social and technological environment; competitive forces from industry rivals, customers and other sources; analysis of internal weaknesses and strengths – resources, competences and success factors; mission and strategic intent; strategic directions and methods – conditions and implications; implementing and evaluating strategic changes; management for technology innovation.
Prerequisite: IMSE2103 Introduction to business and management
Assessment: 30% continuous assessment, 70% examination

IMSE4122. Global logistics systems (6 credits)

Global operations and logistics strategies, strategic changes required by globalisation, the strategic framework for integrating global operations, the role of logistics in global operations and marketing strategies; global operations and logistics planning, supply network development, physical distribution, global logistics network design, global supply chain management, foreign exchange risk management in global operations; operations analysis of global supply chains, information management for global logistics, performance measurement and evaluation in global logistics.

Prerequisite: IMSE3101 Supply chain design and development
Assessment: 20% continuous assessment, 80% examination

IMSE4123. Warehousing and terminal operations (6 credits)

Introduction to warehousing; material handling technologies, MH principles, container and unitizing equipment, storage and retrieval equipment, AS/RS, material transport equipment, automatic data collection and communication equipment, packaging; warehouse management system, receiving, cycle counting, order processing, picking, replenishment, shipping; warehouse planning and design: simulation model and software; design procedures.

Introduction to container terminal and air cargo terminal, basic operation flow at ship, quay, container yard, gate and CFS, container handling equipment and operation modes organization structure of a terminal and its various functions, container ship structure and generations, terminal management system, terminal planning and design methodology and analysis tools.

Prerequisite: IMSE2116 Fundamentals of business logistics
Assessment: 25% continuous assessment, 75% examination

IMSE4125. Logistics systems integration (6 credits)

Student-centred learning on system integration and analysis and evaluation of logistics system performance. The module is based on case studies and covers the application of various techniques as follows:
Facility location analysis; network planning process; warehouse design and management; logistics information management; supply chain performance analysis; alternative supply chain strategies; vehicle routing and scheduling; systems modelling and simulation; customer-supplier relationship; international transportation strategies.

Assessment: 100% continuous assessment

IMSE4128. Innovation and entrepreneurship (6 credits)

Entrepreneurship in the new world economy, developments in the pacific region and greater China; general characteristics of entrepreneurs; enterprise formation, organizational structure, new economy business models; enterprise resources, business plan, venture capital; technological growth; environmental and contingency factors; case studies. Skill workshops: identifying strengths and
improving skills; organising yourself and your time; communication; systematic problem solving; group work; negotiating and assertiveness; coping with pressure; leadership.

Assessment: 30% continuous assessment, 70% examination

IMSE4129. Manufacturing system analysis and design (6 credits)

Prerequisite: IMSE2133 Operational research techniques I
Assessment: 30% continuous assessment, 70% examination