COMPUTER SCIENCE

SYLLABUS

The syllabus applies to students admitted in the academic year 2012-13 and thereafter under the four-year curriculum.

Definition and Terminology

Each course offered by the Department of Computer Science shall be classified as either introductory level course or advanced level course.

A Discipline Core course is a compulsory course which a candidate must pass in the manner provided for in the Regulations.

A Disciplinary elective course refers to any technical course offered by the Department of Computer Science for the fulfillment of the curriculum requirements of the degree of BEng in Computer Science that are not classified as discipline core course.

Curriculum

The Curriculum comprises 240 credits of courses as follows:

General Engineering Courses
Students are required to complete at least 36 credits of General Engineering Course.

Discipline Core Courses
Students are required to complete ALL discipline core courses (60 credits), comprising 24 credits of introductory core courses and 36 credits of advanced core courses.

Disciplinary Elective Courses
Students are required to complete at least 30 credits of disciplinary elective courses offered by the Department of Computer Science.

Elective Courses
Students are required to complete 42 credits of elective course(s) offered by either the Department of Computer Science, or other departments within or outside of the Faculty of Engineering.

University Requirements
Students are required to complete:

a) 12 credits in English language enhancement, including 6 credits in “CAES1000 Core University English” and 6 credits in “CAES9542 Technical English for computer science”;

b) 6 credits in Chinese language enhancement course “CENG9001 Practical Chinese for engineering students”; and

c) 36 credits of courses in the Common Core Curriculum, selecting not more than one course from each Area of Inquiry within one academic year and at least one but no more than two courses from each Area of Inquiry during the whole period of study.

Capstone Experience
Students are required to complete the 12-credit “COMP4801 Final year project” to fulfill the capstone experience requirement for the degree of BEng in Computer Science.
Internship
Students are required to complete the 6-credit internship “COMP3412 Internship”, which normally takes place after their third year of study.

Degree Classification

The degree of Bachelor of Engineering shall be awarded in five divisions in accordance with EN16 of the Regulations for the Degree of Bachelor of Engineering and UG9 of the Regulations for the First Degree Curricula.

The details of the distribution of the above course categories are as follows:

The curriculum of BEng (Computer Science) comprises 240 credits of courses with the following structure:

UG 5 Requirements (54 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAES1000</td>
<td>Core University English</td>
<td>6</td>
</tr>
<tr>
<td>CAES9542</td>
<td>Technical English for computer science</td>
<td>6</td>
</tr>
<tr>
<td>CENG9001</td>
<td>Practical Chinese for engineering students</td>
<td>6</td>
</tr>
<tr>
<td>CC##XXXX</td>
<td>University Common Core Course (6 courses)*</td>
<td>36</td>
</tr>
<tr>
<td>Total for UG5 Requirements</td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>

* Students can select not more than one course from each Area of Inquiry within one academic year and at least one but no more than two courses from each Area of Inquiry during the whole period of study.

Faculty General Engineering Courses (36 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1851</td>
<td>Calculus and ordinary differential equations</td>
<td>6</td>
</tr>
<tr>
<td>MATH1853</td>
<td>Linear algebra, probability and statistics</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1111</td>
<td>Computer programming and applications</td>
<td>6</td>
</tr>
<tr>
<td>PHYS1050</td>
<td>Physics for engineering students</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1202</td>
<td>Introduction to computer science</td>
<td>6</td>
</tr>
<tr>
<td>ENGG120X</td>
<td>Any one of the General Engineering Courses offered by other Departments of the Faculty of Engineering*</td>
<td>6</td>
</tr>
</tbody>
</table>

Total for Faculty General Engineering Courses

36

*Choose one General Engineering Course from the following list:

ENGG1201 Engineering for sustainable development
ENGG1203 Introduction to electrical and electronic engineering
ENGG1204 Industrial management and logistics
ENGG1205 Introduction to mechanical engineering
ENGG1206 Introduction to biomedical engineering

Discipline Core Engineering Courses (60 credits)
Introductory Courses (24 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP2119</td>
<td>Introduction to data structures and algorithms</td>
<td>6</td>
</tr>
<tr>
<td>COMP2120</td>
<td>Computer organization</td>
<td>6</td>
</tr>
<tr>
<td>COMP2121</td>
<td>Discrete mathematics</td>
<td>6</td>
</tr>
<tr>
<td>COMP2123</td>
<td>Programming technologies and tools</td>
<td>6</td>
</tr>
<tr>
<td>Total for Introductory Discipline Core Engineering Courses</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Advanced Courses (36 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP3230</td>
<td>Principles of operation systems</td>
<td>6</td>
</tr>
<tr>
<td>COMP3234</td>
<td>Computer and communication networks</td>
<td>6</td>
</tr>
<tr>
<td>COMP3250</td>
<td>Design and analysis of algorithms</td>
<td>6</td>
</tr>
<tr>
<td>COMP3278</td>
<td>Introduction to database management systems</td>
<td>6</td>
</tr>
<tr>
<td>COMP3297</td>
<td>Introduction to software engineering</td>
<td>6</td>
</tr>
<tr>
<td>COMP3311</td>
<td>Legal aspects of computing</td>
<td>6</td>
</tr>
<tr>
<td>Total for Advanced Discipline Core Engineering Courses</td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

Capstone Experience and Internship (18 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP4801</td>
<td>Final year project¹</td>
<td>12</td>
</tr>
<tr>
<td>COMP3412</td>
<td>Internship*</td>
<td>6</td>
</tr>
<tr>
<td>Total for Capstone Experience and Internship</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

+Capstone Experience
*Training
*Students who are selected to participate in the Undergraduate Research Fellowship Programme are required to complete COMP3413 Research internship and are not required to complete COMP3412 Internship.

Disciplinary Elective Courses (30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP2396</td>
<td>Object-oriented programming and Java</td>
<td>6</td>
</tr>
<tr>
<td>COMP3218</td>
<td>Discrete event simulation</td>
<td>6</td>
</tr>
<tr>
<td>COMP3231</td>
<td>Computer architecture</td>
<td>6</td>
</tr>
<tr>
<td>COMP3235</td>
<td>Compiling techniques</td>
<td>6</td>
</tr>
<tr>
<td>COMP3247</td>
<td>Topics in computer systems</td>
<td>6</td>
</tr>
<tr>
<td>COMP3259</td>
<td>Principles of programming languages</td>
<td>6</td>
</tr>
<tr>
<td>COMP3262</td>
<td>Topics in computer applications</td>
<td>6</td>
</tr>
<tr>
<td>COMP3270</td>
<td>Artificial intelligence</td>
<td>6</td>
</tr>
<tr>
<td>COMP3271</td>
<td>Computer graphics</td>
<td>6</td>
</tr>
<tr>
<td>COMP3293</td>
<td>Introduction to theory of computation</td>
<td>6</td>
</tr>
<tr>
<td>COMP3314</td>
<td>Pattern classification and machine learning</td>
<td>6</td>
</tr>
<tr>
<td>COMP3315</td>
<td>Multimedia computing and applications</td>
<td>6</td>
</tr>
</tbody>
</table>
Complete at least five disciplinary elective courses for a total of 30 credits

Elective Courses (42 credits)

At least 42 credits of courses offered by either the Department of Computer Science, or other departments within or outside of the Faculty of Engineering.

Summary of curriculum structure of BEng (Computer Science)

<table>
<thead>
<tr>
<th>Course Categories</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>UG5 Requirements</td>
<td>54</td>
</tr>
<tr>
<td>General Engineering Courses</td>
<td>36</td>
</tr>
<tr>
<td>Discipline Core Engineering Courses (Introductory)</td>
<td>24</td>
</tr>
<tr>
<td>Discipline Core Engineering Courses (Advanced)</td>
<td>36</td>
</tr>
<tr>
<td>Capstone Experience and Internship</td>
<td>18</td>
</tr>
<tr>
<td>Disciplinary elective Courses</td>
<td>30</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>42</td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
</tr>
</tbody>
</table>

The proposed syllabus by study year is as follows:

FIRST YEAR

General Engineering Courses (36 credits)
- MATH1851 Calculus and ordinary differential equations
- MATH1853 Linear algebra, probability and statistics
- ENGG1111 Computer programming and applications
- PHYS1050 Physics for engineering students
- ENGG1202 Introduction to computer science
- ENGG120X Any one of the General Engineering Courses offered by other Departments of the Faculty of Engineering
University Requirements (UG5) (24 credits)
CAES1000 Core University English
CC##XXXX Three Common Core Courses

SECOND YEAR

Introductory Core Courses (24 credits)
COMP2119 Introduction to data structures and algorithms
COMP2120 Computer organization
COMP2121 Discrete mathematics
COMP2123 Programming technologies and tools

Disciplinary Elective Courses (6 credits)

Elective Courses (12 credits)

University Requirements (UG5) (18 credits)
CC##XXXX Three Common Core Courses

THIRD YEAR

Advanced Core Courses (36 credits)
COMP3230 Principles of operation systems
COMP3234 Computer and communication networks
COMP3250 Design and analysis of algorithms
COMP3278 Introduction to database management systems
COMP3297 Introduction to software engineering
COMP3311 Legal aspects of computing

Internship (6 credits)
COMP3412 Internship

University Requirements (UG5) (6 credits)
CENG9001 Practical Chinese for engineering students

Disciplinary Elective Courses (12 credits)

Elective Courses (6 credits)

FOURTH YEAR

Disciplinary Elective Courses (12 credits)

Capstone Experience (12 credits)
COMP4801 Final year project

University Requirements (UG5) (6 credits in total)
CAES9542 Technical English for computer science

Elective Courses (24 credits)
MAJOR IN COMPUTER SCIENCE
(for non-BEng(CompSc) students)

The curriculum comprises 84 credits of courses with the following structure:

Prerequisite: Level 3 or above in Mathematics in the Hong Kong Diploma of Secondary Education (HKDSE) Examination

Introductory Courses (30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP1117</td>
<td>Computer programming</td>
<td>6</td>
</tr>
<tr>
<td>COMP2119</td>
<td>Introduction to data structures and algorithms</td>
<td>6</td>
</tr>
<tr>
<td>COMP2120</td>
<td>Computer organization</td>
<td>6</td>
</tr>
<tr>
<td>COMP2121</td>
<td>Discrete mathematics</td>
<td>6</td>
</tr>
<tr>
<td>COMP2123</td>
<td>Programming technologies and tools</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total for Introductory Courses</td>
<td>30</td>
</tr>
</tbody>
</table>

Advanced Courses (48 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 credits of courses to be chosen from the following list:</td>
<td>12</td>
</tr>
<tr>
<td>COMP3230</td>
<td>Principles of operating systems</td>
<td></td>
</tr>
<tr>
<td>COMP3234</td>
<td>Computer and communication networks</td>
<td></td>
</tr>
<tr>
<td>COMP3278</td>
<td>Introduction to database management systems</td>
<td></td>
</tr>
<tr>
<td>COMP3297</td>
<td>Introduction to software engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36 credits of elective courses to be chosen from the following list:</td>
<td>36</td>
</tr>
<tr>
<td>COMP3230</td>
<td>Principles of operating systems</td>
<td></td>
</tr>
<tr>
<td>COMP3234</td>
<td>Computer and communication networks</td>
<td></td>
</tr>
<tr>
<td>COMP3278</td>
<td>Introduction to database management systems</td>
<td></td>
</tr>
<tr>
<td>COMP3297</td>
<td>Introduction to software engineering</td>
<td></td>
</tr>
<tr>
<td>COMP3296</td>
<td>Object-oriented programming and Java</td>
<td></td>
</tr>
<tr>
<td>COMP3250</td>
<td>Design and analysis of algorithms</td>
<td></td>
</tr>
<tr>
<td>COMP3270</td>
<td>Artificial intelligence</td>
<td></td>
</tr>
<tr>
<td>COMP3271</td>
<td>Computer graphics</td>
<td></td>
</tr>
<tr>
<td>COMP3293</td>
<td>Introduction to theory of computation</td>
<td></td>
</tr>
<tr>
<td>COMP3311</td>
<td>Legal aspects of computing</td>
<td></td>
</tr>
<tr>
<td>COMP3315</td>
<td>Multimedia computing and applications</td>
<td></td>
</tr>
<tr>
<td>COMP3317</td>
<td>Computer vision</td>
<td></td>
</tr>
<tr>
<td>COMP3320</td>
<td>Electronic commerce technology</td>
<td></td>
</tr>
<tr>
<td>COMP3322</td>
<td>Modern technologies on World Wide Web</td>
<td></td>
</tr>
<tr>
<td>COMP3327</td>
<td>Computer and network security</td>
<td></td>
</tr>
<tr>
<td>COMP3330</td>
<td>Interactive mobile application design and programming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total for Advanced Courses</td>
<td>42</td>
</tr>
</tbody>
</table>
Capstone Experience (6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP4805</td>
<td>Project</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total for Capstone Experience</td>
<td>6</td>
</tr>
</tbody>
</table>

Note 1 Students whose first major is Mathematics may be granted waiver of COMP2121, upon application, on the condition that students are required to complete one more elective in Computer Science as replacement. Students who have completed MATH2600 Discrete mathematics are deemed to have completed COMP2121, they are not permitted to take COMP2121 and are required to complete one more elective in Computer Science.

Note 2 Students may apply to enroll in other COMP courses not listed above, subject to the approval of the Head of Department of Computer Science.

MINOR IN COMPUTER SCIENCE
(This minor option is not available for BEng(CE) and BEng(CompSc) students)

The curriculum comprises 42 credits of courses with the following structure:

Prerequisite: Level 3 or above in Mathematics in the Hong Kong Diploma of Secondary Education (HKDSE) Examination

Introductory Courses (18 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP1117</td>
<td>Computer programming</td>
<td>6</td>
</tr>
<tr>
<td>COMP2119</td>
<td>Introduction to data structures and algorithms</td>
<td>6</td>
</tr>
<tr>
<td>COMP2123</td>
<td>Programming technologies and tools</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total for Introductory Courses</td>
<td>18</td>
</tr>
</tbody>
</table>

Advanced Courses (24 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 credits of courses to be chosen from the following list:</td>
<td>24</td>
</tr>
<tr>
<td>COMP2120</td>
<td>Computer organization</td>
<td></td>
</tr>
<tr>
<td>COMP2121</td>
<td>Discrete mathematics</td>
<td></td>
</tr>
<tr>
<td>COMP2396</td>
<td>Object-oriented programming and Java</td>
<td></td>
</tr>
<tr>
<td>COMP3250</td>
<td>Design and analysis of algorithms</td>
<td></td>
</tr>
<tr>
<td>COMP3270</td>
<td>Artificial intelligence</td>
<td></td>
</tr>
<tr>
<td>COMP3271</td>
<td>Computer graphics</td>
<td></td>
</tr>
<tr>
<td>COMP3278</td>
<td>Introduction to database management systems</td>
<td></td>
</tr>
<tr>
<td>COMP3293</td>
<td>Introduction to theory of computation</td>
<td></td>
</tr>
<tr>
<td>COMP3297</td>
<td>Introduction to software engineering</td>
<td></td>
</tr>
<tr>
<td>COMP3311</td>
<td>Legal aspects of computing</td>
<td></td>
</tr>
<tr>
<td>COMP3315</td>
<td>Multimedia computing and applications</td>
<td></td>
</tr>
<tr>
<td>COMP3317</td>
<td>Computer vision</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>COMP3320</td>
<td>Electronic commerce technology</td>
<td></td>
</tr>
<tr>
<td>COMP3322</td>
<td>Modern technologies on World Wide Web</td>
<td></td>
</tr>
<tr>
<td>COMP3330</td>
<td>Interactive mobile application design and programming</td>
<td></td>
</tr>
<tr>
<td>Total for Advanced Courses</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Note 1: BEng students who have completed ENGG1111 Computer programming and applications are deemed to have completed COMP1117 Computer programming, and they are required to complete one more elective in Computer Science as replacement (i.e. a total of 30 credits).

Note 2: Students may apply to enrol in other COMP courses not listed above, subject to the approval of the Head of Department of Computer Science.

COURSE DESCRIPTIONS

Candidates will be required to do the coursework in the respective courses selected. Not all courses are offered every semester.

Faculty General Engineering Courses

- ENGG1111 Computer programming (6 credits) or
- ENGG1112 Computer programming I (6 credits)
- MATH1851 Calculus and ordinary differential equations (6 credits)
- MATH1853 Linear algebra, probability and statistics (6 credits)
- PHYS1050 Physics for engineering students (6 credits)
- ENGG1201 Engineering for sustainable development (6 credits)
- ENGG1202 Foundation of computer science (6 credits)
- ENGG1203 Introduction to electrical and electronic engineering (6 credits)
- ENGG1204 Industrial management and logistics (6 credits)
- ENGG1205 Introduction to mechanical engineering (6 credits)
- ENGG1206 Introduction to biomedical engineering (6 credits)

Please refer to the General Engineering Courses in the syllabus for the degree of BEng for details.

University Requirements on Language Enhancement Courses

- **CAES1000.** Core University English (6 credits)
- **CENG9001.** Practical Chinese for engineering students (6 credits)

Please refer to the University Language Enhancement Courses in the syllabus for the degree of BEng for details.

CAES9542. Technical English for computer science (6 credits)

Running alongside Final Year Project, this one semester, 6-credit course will build and consolidate final year CS students’ ability to compose technical reports, and make technical oral presentations. The focus of this course is on helping students to report on the progress of their Final Year Project in an effective, professional manner in both written and oral communication. Topics include accessing, abstracting,
analyzing, organizing and summarizing information; making effective grammatical and lexical choices; technical report writing; and technical presentations. Assessment is wholly by coursework.

Assessment: 100% continuous assessment.

University Common Core Curriculum

36 credits of courses in the University Common Core Curriculum, in which students can select not more than one course from each Area of Inquiry within one academic year and at least one but no more than two courses from each Area of Inquiry during the whole period of study:

- Scientific and Technology Literacy
- Humanities
- Global Issues
- China: Culture, State and Society

Courses with prefix CSISxxxx are offered to students admitted to the 3-year curriculum in 2012/13 and before, courses with prefix COMPxxxx are offered to students admitted to the 4-year curriculum in 2012/13 and thereafter.

ENGG1111. Computer programming and applications (6 credits)

This course covers both the basic and advanced features of the C/C++ programming languages, including syntax, identifiers, data types, control statements, functions, arrays, file access, objects and classes, class string, structures and pointers. It introduces programming techniques such as recursion, linked lists and dynamic data structures. The concept and skills of program design, implementation and debugging, with emphasis on problem-solving, will also be covered.

Target students are those who wish to complete the programming course in a more intensive mode in 1 semester. Students with some programming knowledge are encouraged to take this course.

Assessment: 50% continuous assessment, 50% examination

ENGG1202. Introduction to computer science (6 credits)

This course introduces a number of real-world computational problems taken from different areas of computer science (e.g. security and cryptography, artificial intelligence, database, web and networking). Through these problems and some hands-on exercises, students are exposed to the mathematics, data structures and algorithms that form the foundations of computer science and see how these elements integrated together to solve those problems.

Assessment: 100% continuous assessment

COMP1117. Computer programming (6 credits)

This course covers both the basic and advanced features of the C/C++ programming languages, including
syntax, identifiers, data types, control statements, functions, arrays, file access, objects and classes, class string, structures and pointers. It introduces programming techniques such as recursion, linked lists and dynamic data structures. The concept and skills of program design, implementation and debugging, with emphasis on problem-solving, will also be covered.

Assessment: 50% continuous assessment, 50% examination

COMP2119. Introduction to data structures and algorithms (6 credits)

Arrays, linked lists, trees and graphs; stacks and queues; symbol tables; priority queues, balanced trees; sorting algorithms; complexity analysis.

Prerequisite: CSIS1117 or COMP1117 or ENGG1002 or ENGG1111 or ENGG1112
Pre-/Co-requisite: CSIS1122 or CSIS1123 or COMP2123
Assessment: 40% continuous assessment, 60% examination

COMP2120. Computer organization (6 credits)

Introduction to computer organization and architecture; data representations; instruction sets; machine and assembly languages; basic logic design and integrated devices; the central processing unit and its control; memory and caches; I/O and storage systems; computer arithmetic.

Co-requisite: CSIS1117 or COMP1117 or ENGG1002 or ENGG1111 or ENGG1112
Assessment: 50% continuous assessment, 50% examination

COMP2123. Programming technologies and tools (6 credits)

This course introduces various technologies and tools that are useful for software development, including Linux, C++ STL, the C language, shell scripts, python and xml. Learning materials will be provided but there will be no lecture. This strengthens the self-learning ability of the students.

Prerequisite: CSIS1117 or COMP1117 or ENGG1002 or ENGG1111 or ENGG1112
Assessment: 50% continuous assessment, 50% examination

COMP2396. Object-oriented programming and Java (6 credits)

Introduction to object-oriented programming; abstract data types and classes; inheritance and
polymorphism; object-oriented program design; Java language and its program development environment; user interfaces and GUI programming; collection class and iteration protocol; program documentation.

Prerequisite: CSIS1117 or COMP1117 or ENGG1002 or ENGG1111 or ENGG1112
Assessment: 50% continuous assessment, 50% examination

COMP3218. Discrete event simulation (6 credits)
Topics include: Monte Carlo methods, discrete event simulation, elements of simulation models, data collection and analysis, simulation language for modelling, random number generation, queuing models, and output analysis.

Prerequisite: CSIS1119 or COMP2119 or CSIS1122 or CSIS1123 or COMP2123 or ELEC1502 or ELEC1503 or ELEC2543
Assessment: 40% continuous assessment, 60% examination

COMP3230. Principles of operating systems (6 credits)
Operating system structures, process and thread, CPU scheduling, process synchronization, deadlocks, memory management, file systems, I/O systems and device driver, mass-storage structure and disk scheduling, case studies.

Prerequisites: CSIS1122 or CSIS1123 or COMP2123 and CSIS1120 or COMP2120 or ELEC1401 or ELEC2441
Assessment: 50% continuous assessment, 50% examination

COMP3231. Computer architecture (6 credits)
Introduction to computer design process; performance and cost analysis; instruction set design; data-path and controller design; pipelining; memory system; I/O design; introduction to advanced topics.

Prerequisite: CSIS1120 or COMP2120
Assessment: 40% continuous assessment, 60% examination

COMP3234. Computer and communication networks (6 credits)
Network structure and architecture; reference models; stop and wait protocol; sliding window protocols; character and bit oriented protocols; virtual circuits and datagrams; routing; flow control; congestion control; local area networks; issues and principles of network interconnection; transport protocols and application layer; and examples of network protocols.

Prerequisite: CSIS1120 or COMP2120 or ELEC1401 or ELEC2441
Assessment: 50% continuous assessment, 50% examination
COMP3235. Compiling techniques (6 credits)

Lexical analysis; symbol table management; parsing techniques; error detection; error recovery; error diagnostics; run-time memory management; optimization; code generation.

Prerequisite: CSIS1122 or CSIS1123 or COMP2123
Assessment: 50% continuous assessment, 50% examination

COMP3247. Topics in computer systems (6 credits)

Topics in computer hardware and/or software systems that are of current interest.

Assessment: 50% continuous assessment, 50% examination

COMP3250. Design and analysis of algorithms (6 credits)

The course studies various algorithm design techniques, such as divide and conquer, and dynamic programming. These techniques are applied to design highly non-trivial algorithms from various areas of computer science. Topics include: advanced data structures; graph algorithms; searching algorithms; geometric algorithms; overview of NP-complete problems.

Prerequisite: CSIS1119 or COMP2119 or ELEC1502 or ELEC1503 or ELEC2543
Assessment: 50% continuous assessment, 50% examination

COMP3259. Principles of programming languages (6 credits)

Syntax and semantics specification; data types; data control and memory management; expressions, precedence and associativity of operators; control structures; comparative study of existing programming languages; advanced topics such as polymorphism, programming paradigms, exception handling and concurrency.

Prerequisites: CSIS1119 or COMP2119; and CSIS1120 or COMP2120 or ELEC1401 or ELEC2441
Assessment: 40% continuous assessment, 60% examination

COMP3262. Topics in computer applications (6 credits)

Some specialized application areas of computers.

Assessment: 50% continuous assessment, 50% examination

COMP3270. Artificial intelligence (6 credits)

This is an introduction course on the subject of artificial intelligence. Topics include: intelligent agents; search techniques for problem solving; knowledge representation; logical inference; reasoning under uncertainty; statistical models and machine learning. This course may not be taken with BUSI0088.
Prerequisite: CSIS1119 or COMP2119 or CSIS1122 or CSIS1123 or COMP2123
Assessment: 50% continuous assessment, 50% examination

COMP3271. Computer graphics (6 credits)

Overview of graphics hardware, basic drawing algorithms, 2-D transformations, windowing and clipping, interactive input devices, curves and surfaces, 3-D transformations and viewing, hidden-surface and hidden-line removal, shading and colour models, modelling, illumination models, image synthesis, computer animation.

Prerequisite: CSIS1119 or COMP2119 or CSIS1122 or CSIS1123 or COMP2123
Assessment: 50% continuous assessment, 50% examination

COMP3278. Introduction to database management systems (6 credits)

This course studies the principles, design, administration, and implementation of database management systems. Topics include: entity-relationship model, relational model, relational algebra, database design and normalization, database query languages, indexing schemes, integrity and concurrency control. This course may not be taken with BUSI0052.

Prerequisite: CSIS1119 or COMP2119 or ELEC1502 or ELEC1503 or ELEC2543
Assessment: 50% continuous assessment, 50% examination

COMP3293. Introduction to theory of computation (6 credits)

This course focuses on three traditional areas of the theory of computation: automata, computability and complexity. Topics include finite state automata and regular languages; pushdown automata and context free languages; Turing machines and random access machines; time complexity; space complexity; intractable problems; reduction and completeness; relationship among complexity classes; approximation algorithms and nonapproximability.

Prerequisite: CSIS1119 or COMP2119
Assessment: 50% continuous assessment, 50% examination

COMP3297. Introduction to software engineering (6 credits)

This course introduces the fundamental principles and methodologies of software engineering. It covers the software process and methods and tools employed in the development of modern systems. The use of CASE tools and the UML are emphasized. The course includes a team-based project in which students apply their new knowledge to a full development lifecycle, including maintenance.

Prerequisite: CSIS1122 or CSIS1123 or COMP2123
Assessment: 50% continuous assessment, 50% examination
COMP3311. Legal aspects of computing (6 credits)

To introduce students to the laws affecting computing and the legal issues arising from the technology. Contents include: the legal system of Hong Kong; copyright protection for computer programs; intellectual property issues on the Internet; data privacy; computer-related crimes; codes of professional conduct for computer professionals.

Prerequisite: CSIS1122 or CSIS1123 or COMP2123
Assessment: 40% continuous assessment, 60% examination

COMP3314. Pattern classification and machine learning (6 credits)

This is an introduction course on the subjects of statistical pattern classification and machine learning. Topics include: introduction to pattern classification problems; performance evaluation; Bayesian decision theory; feature extraction techniques; parametric models; maximum-likelihood parameter estimation; maximum-discriminant decision rules; minimum classification error training; clustering techniques; decision trees and their learning techniques.

Prerequisite: CSIS1119 or COMP2119 or ELEC1502 or ELEC1503 or ELEC2543
Assessment: 50% continuous assessment, 50% examination

COMP3315. Multimedia computing and applications (6 credits)

This course introduces various aspects of the interdisciplinary and multidisciplinary field of multimedia computing. Current developments of technologies and techniques in multimedia will also be covered. Applications of multimedia techniques are also highlighted through a media production course project. Major topics include: what are media, audio, acoustics and psychoacoustics, MIDI, basic compression techniques, video compression techniques, standards, and current multimedia technologies. This course may not be taken with BUSI0068.

Prerequisite: CSIS1119 or COMP2119
Assessment: 50% continuous assessment, 50% examination

COMP3317. Computer vision (6 credits)

This course introduces the principles, mathematical models and applications of computer vision. Topics include: image processing techniques, feature extraction techniques, imaging models and camera calibration techniques, stereo vision, and motion analysis.

Prerequisite: CSIS1119 or COMP2119 or ELEC1502 or ELEC1503 or ELEC2543
Assessment: 50% continuous assessment, 50% examination

COMP3320. Electronic commerce technology (6 credits)

This course aims to help students to understand the technical and managerial challenges they will face as electronic commerce becomes a new locus of economics activities. Topics include Internet and WWW
technology, information security technologies, public-key crypto-systems, public-key infrastructure, electronic payment systems, and electronic commerce activities in different sectors.

Prerequisite: CSIS0278 or COMP3278
Assessment: 30% continuous assessment, 70% examination

COMP3322. Modern technologies on World Wide Web (6 credits)

Introduction and history; basics on computer networks, internetworking, and network protocols; Internet applications; Domain Name System; World Wide Web; Web addressing; HTTP; HTML, XML, style sheets, etc.; programming the Web: PHP, JavaScript, etc.; Web security; other topics of current interest (AJAX, web services, cloud computing). This course may not be taken with BUSI0063.

Prerequisite: CSIS1117 or COMP1117 or ENGG1002 or ENGG1111 or ENGG1112
Assessment: 50% continuous assessment, 50% examination

COMP3323. Advanced database systems (6 credits)

The course will study some advanced topics and techniques in database systems, with a focus on the system and algorithmic aspects. It will also survey the recent development and progress in selected areas. Topics include: query optimization, spatial-spatiotemporal data management, multimedia and time-series data management, information retrieval and XML, data mining.

Prerequisite: CSIS0278 or COMP3278
Assessment: 50% continuous assessment, 50% examination

COMP3324. Topics in theoretical computer science (6 credits)

Topics of current interest in theoretical computer science not covered by other undergraduate courses. Topics may vary from year to year.

Pre/Co-requisite: CSIS0293 or COMP3293 or CSIS0250 or COMP3250
Assessment: 30% continuous assessment, 70% examination

COMP3325. Topics in Web technologies (6 credits)

This course presents selected topics that are essential in our understanding and appreciation of the latest advances in technologies related to the World Wide Web. Possible topics include XML, RDF and metadata, style languages, Web graphics and synchronized multimedia, privacy, content selection, accessibility, Web server architecture, mobile access, distributed authoring and versioning, and internationalization.

Prerequisite: CSIS0234 or COMP3234 or CSIS0322 or COMP3322
Assessment: 50% continuous assessment, 50% examination
COMP3326. Computational molecular biology (6 credits)

The novel and specialised algorithms needed to solve computational problems related to the vast amounts of data generated by modern molecular biology techniques will be examined in detail.

Prerequisite: CSIS0250 or COMP3250 or BIOC2808
Assessment: 40% continuous assessment, 60% examination

COMP3327. Computer and network security (6 credits)

This course introduces the principles, mechanisms and implementation of computer security and data protection. Knowledge about the attack and defend are included. Topics include notion and terms of information security; introduction to encryption: classic and modern encryption technologies include public-key systems; authentication methods; access control methods; system integrity attacks and defences (e.g. viruses); introduction to network/Internet security; analysis and models of secure systems.

Pre-requisites: CSIS0230 or COMP3230; and CSIS0234 or COMP3234
Assessment: 30% continuous assessment, 70% examination

COMP3328. Wireless and mobile communication (6 credits)

This course introduces the basic principles and technologies in various mobile and wireless communication systems. Topics include mobile communication environment; digital modulation; channel coding; medium access technologies; cellular mobile radio systems; wireless LANs; security in wireless systems; internetworking in wireless systems; mobility applications.

Prerequisite: CSIS0234 or COMP3234; and CSIS0396 or COMP2396
Assessment: 50% continuous assessment, 50% examination

COMP3329. Computer game design and programming (6 credits)

The course will study practical topics in game design. Topics includes: types of game, game platforms, design of game, 3D model and kinematics, rendering techniques, collision detection, project management, AI, UI, sound effects, and networking.

Pre-requisite: CSIS1119 or COMP2119
Assessment: 50% continuous assessment, 50% examination

COMP3351. Advanced algorithm analysis (6 credits)

This class introduces advanced mathematical techniques for analyzing the complexity and correctness of algorithms. NP-complete problems are believed to be not solvable in polynomial time and we study how approximation algorithms could give near optimal solutions. In particular, we will see that probability theory gives us a very powerful tool to tackle problems that are otherwise hard to solve.

Prerequisite: CSIS0250 or COMP3250; or basic knowledge in probability and algorithms
COMP3402. System architecture and distributed computing (6 credits)

This course introduces the architecture of modern systems and the concepts and principles of distributed computing. Topics include: client-server computing, multi-tier architectures, data/object persistence, parallel server systems, naming services, transaction processing, middleware and messaging, component technologies, and web services/APIs.

Prerequisite: CSIS0396 or COMP2396
Assessment: 50% continuous assessment, 50% examination

COMP3403. Implementation, testing and maintenance of software systems (6 credits)

This course examines the theory and practice of software implementation, testing and maintenance. Topics in implementation include: detailed design issues and implementation strategies; coding style and standards; the review process; quality metrics; pattern implementation and reuse. Testing covers strategies and techniques for unit and component testing; integration testing; system, performance and acceptance testing; test documentation and test management. Topics in maintenance include maintenance techniques, tools and metrics; software rejuvenation; and refactoring.

Pre/Co-requisite: CSIS0396 or COMP2396
Assessment: 50% continuous assessment, 50% examination

COMP3404. Software quality and project management (6 credits)

This course covers software quality and project management. Topics in software quality include software quality assurance; software quality metrics; review; inspection and audits. Topics in project management include project planning and scheduling; project control; risk analysis; planning and monitoring; process management and process improvement; configuration management and control; software acquisition; contract briefing, negotiation and management. This course may not be taken with BUSI0060 or BUSI0061.

Prerequisite: CSIS0297 or COMP3297
Assessment: 40% continuous assessment, 60% examination

COMP3406. Real-time and embedded systems (6 credits)

Topics include: specification of real-time software requirements; design, implementation, and evaluation of real-time software; analysis and verification of real-time computing system performance.

Prerequisite: CSIS0230 or COMP3230
Assessment: 50% continuous assessment, 50% examination
BEng-55

COMP3407. Scientific computing (6 credits)

This course provides an overview and covers the fundamentals of scientific and numerical computing. Topics include numerical analysis and computation, symbolic computation, scientific visualization, architectures for scientific computing, and applications of scientific computing.

Prerequisites: CSIS1117 or COMP1117 or ENGG1002 or ENGG1111 or ENGG1112; and CSIS1118 or ENGG1007 or COMP2121

Assessment: 50% continuous assessment, 50% examination

COMP3330. Interactive mobile application design and programming (6 credits)

This course introduces the Android platform for developing interactive mobile applications. Topics include user interface, parallel computing, graphics, multimedia, sensors, database, and social computing. Students participate in both individual assignments and group projects to practice ideation, reading, writing, coding, and presentation.

Prerequisite: CSIS1117 or COMP1117 or ENGG1002 or ENGG1111 or ENGG1112 or CSIS0396 or COMP2396

Assessment: 50% continuous assessment, 50% examination

COMP3412 Internship (6 credits) [for intakes of 2012 and thereafter (4-year curriculum)]

The course consists of two components: internship and professionalism. Internship requires students to spend a minimum of four weeks employed, full-time, as IT interns or trainees. During this period, they are engaged in work of direct relevance to their programme of study. The Internship provides students with practical, real-world experience and represents a valuable complement to their academic training. Professionalism exposes students to social and professional issues in computing. Students need to understand their professional roles when working as computer professionals as well as the responsibility that they will bear. They also need to develop the ability to ask serious questions about the social impact of computing and to evaluate proposed answers to those questions. Topics include social context of computing, risks, safety and security concerns for computer professionals, professional and ethical responsibilities, and continuing professional development.

Assessment: 100% continuous assessment

COMP3413. Research internship (6 credits)

The student will participate in a research project under the guidance and supervision of a teacher over a prescribed period of time; the results will be presented in an oral and a written report.

Assessment: 100% continuous assessment
COMP4801. Final year project (12 credits)

Student individuals or groups, during the final year of their studies, undertake full end-to-end development of a substantial project, taking it from initial concept through to final delivery. Topics range from applied software development to assignments on basic research. In case of a team project, significant contribution is required from each member and students are assessed individually, such that each student is given a separate project title. Strict standards of quality will be enforced throughout the project development.

Assessment: 100% continuous assessment

COMP4804 Computing and data analytics project (6-credits) [for candidates pursuing the degree BEng(EngSc) – Computing and Data Analytics]

Students during the final year of their studies undertake a substantial project, taking it from initial concept through to final delivery, and integrating their knowledge and skills on computing and data analytics.

Assessment: 100% continuous assessment

COMP4805 Project (6-credits) [for non-BEng(CompSc) candidates pursuing Computer Science as second major]

Students during the final year of their studies undertake a substantial project, taking it from initial concept through to final delivery, and integrating their knowledge and skills on computing.

Assessment: 100% continuous assessment

Candidates may take up to two MSc(CompSc) courses as electives, subject to the approval of the Head of Department. An MSc(CompSc) course is equivalent to a 6-credit course, by undertaking additional workload than an MSc(CompSc) student in the course concerned.